cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A208183 Number of distinct k-colored necklaces with n beads per color; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 16, 4, 1, 1, 1, 24, 318, 188, 10, 1, 1, 1, 120, 11352, 30804, 2896, 26, 1, 1, 1, 720, 623760, 11211216, 3941598, 50452, 80, 1, 1, 1, 5040, 48648960, 7623616080, 15277017432, 586637256, 953056, 246, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2012

Keywords

Comments

From Vaclav Kotesovec, Aug 23 2015: (Start)
Column k > 1 is asymptotic to k^(k*n-1/2) / ((2*Pi)^((k-1)/2) * n^((k+1)/2)).
Row r > 0 is asymptotic to (r*n)! / (r*n*(r!)^n). (End)

Examples

			A(1,4) =  6: {0123, 0132, 0213, 0231, 0312, 0321}.
A(3,2) =  4: {000111, 001011, 010011, 010101}.
A(4,2) = 10: {00001111, 00010111, 00100111, 01000111, 00011011, 00110011, 00101011, 01010011, 01001011, 01010101}.
Square array A(n,k) begins:
  1, 1,  1,     1,         1,              1, ...
  1, 1,  1,     2,         6,             24, ...
  1, 1,  2,    16,       318,          11352, ...
  1, 1,  4,   188,     30804,       11211216, ...
  1, 1, 10,  2896,   3941598,    15277017432, ...
  1, 1, 26, 50452, 586637256, 24934429725024, ...
		

Crossrefs

Columns k=0+1, 2-8 give: A000012, A003239, A118644, A207816, A208190, A208191, A208192, A208193.
Main diagonal gives A252765.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> `if`(n=0 or k=0, 1,
                  add(phi(n/d) *(k*d)!/(d!^k *k*n), d=divisors(n))):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] :=  If[n == 0 || k == 0, 1, Sum[EulerPhi[n/d]*(k*d)!/(d!^k*k*n), {d, Divisors[n]}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

A(n,k) = Sum_{d|n} phi(n/d)*(k*d)!/(d!^k*k*n) if n,k>0; A(n,k) = 1 else.
A(n,k) = Sum_{i=1..n} (k*gcd(n,i))!/(gcd(n,i)!^k*k*n) = Sum_{i=1..n} (k*n/gcd(n,i))!/((n/gcd(n,i))!^k*k*n)*phi(gcd(n,i))/phi(n/gcd(n,i)) for n,k >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021

A207816 Number of distinct necklaces with n red, n green, n blue and n white beads.

Original entry on oeis.org

1, 6, 318, 30804, 3941598, 586637256, 96197661156, 16875655269948, 3111284141045598, 595909785174057204, 117634021777132574568, 23797087019979071174580, 4912693780461352534397604, 1031629572413246016139181544, 219809927417367534490107035244, 47426945434432859336092700072304
Offset: 0

Views

Author

Keywords

Examples

			For n=1, a(1)=6 since for four beads necklaces with each bead from each of the four colors say (R,G,B,W), we can arrange as following, [R,G,B,W], [R,G,W,B], [R,B,G,W], [R,B,W,G], [R,W,G,B] and [R,W,B,G].
		

Crossrefs

Column k=4 of A208183. - Alois P. Heinz, Feb 24 2012

Programs

  • Maple
    with(combinat): with(numtheory):
    # This formula comes from Polya Counting Theorem:
    # Z(C_n) = add(phi(d)*(a_d)^(n/d), d in divisors(n))/n;
    PolyaBrace:= proc(S) option remember; local n, s, d;
                   n:= add(s, s=S);
                   add(phi(d) *PolyaCoeff(d, S), d=divisors(n))/n
                 end:
    # Find coeff of prod(a[i]^s[i], i=1..n) of a_d^(n/d) (symmetric function)
    PolyaCoeff:= proc(d, S) option remember; local n, pow, s;
                   n:= add(s, s=S);
                   pow:= n/d;
                   if {seq(s mod d, s = S)} = {0}
                      then multinomial(pow, seq(s/d, s = S))
                      else 0
                   fi:
                 end:
    a:= n-> `if`(n=0, 1, PolyaBrace([n$4])):
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] (4#)!/(#!^4 * 4n)&]; a[0]=1;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{d|n} phi(n/d)*(4*d)!/(d!^4*4*n) if n>0 and a(0) = 1. - Alois P. Heinz, Feb 24 2012
a(n) ~ 2^(8*n-5/2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Aug 23 2015
Showing 1-2 of 2 results.