A003239
Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400, 36054433810102, 136583761444364, 518401146543812
Offset: 0
As _David Callan_ said, a(n) is the number of n-multisets in Z mod n whose sum is 0. So for n = 4 the a(4)=10 multisets are (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (2, 2, 2, 2), (0, 0, 1, 3), (1, 2, 2, 3), (1, 1, 3, 3), (0, 2, 3, 3) and (3, 3, 3, 3). - _Boas Bakker_, Apr 21 2025
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 305 (see R(x)).
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; page 80, Problem 3.13.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(b).
- Seiichi Manyama, Table of n, a(n) for n = 0..1669 (terms 0..200 from T. D. Noe)
- Michal Bassan, Serte Donderwinkel, and Brett Kolesnik, Graphical sequences and plane trees, arXiv:2406.05110 [math.CO], 2024.
- Bruce M. Boman, Thien-Nam Dinh, Keith Decker, Brooks Emerick, Christopher Raymond, and Gilberto Schleinger, Why do Fibonacci numbers appear in patterns of growth in nature?, Fibonacci Quarterly, 55(5) (2017), 30-41.
- R. Brualdi and M. Newman, An enumeration problem for a congruence equation, J. Res. Nat. Bureau Standards, B74 (1970), 37-40.
- CombOS - Combinatorial Object Server, Generate rooted plane trees.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9(2) (1998), 233--238. MR1691428 (2000c:13006).
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10(2) (1999), 173--188. MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combin. Theory Ser. A, 18 (1975), 199-202. See Eq. (4), a(n) = S(n,n,0).
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- Thomas C. Hull and Tomohiro Tachi, Double-line rigid origami, arXiv:1709.03210 [math.MG], 2017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 761.
- Benjamin Ruoyu Kan, Polynomial Approximations for Quantum Hamiltonian Complexity, Bachelor's thesis, Harvard Univ., 2023.
- G. Labelle and P. Leroux, Enumeration of (uni- or bicolored) plane trees according to their degree distribution, Disc. Math. 157 (1996), 227-240, Eq. (1.18).
- J. Malenfant, On the Matrix-Element Expansion of a Circulant Determinant, arXiv preprint arXiv:1502.06012 [math.NT], 2015.
- Paul Melotti, Sanjay Ramassamy, and Paul Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
- J. Sawada, Generating rooted and free plane trees, ACM Transactions on Algorithms, 2(1) (2006), 1-13.
- Hugh Thomas, The number of terms in the permanent and the determinant of a generic circulant matrix, arXiv:math/0301048 [math.CO], 2003.
- D. W. Walkup, The number of plane trees, Mathematika, 19(2) (1972), 200-204. - From _N. J. A. Sloane_, Jun 08 2012
- Index entries for sequences related to necklaces
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
with(numtheory): A003239 := proc(n) local t1,t2,d; t2 := divisors(n); t1 := 0; for d in t2 do t1 := t1+phi(n/d)*binomial(2*d,d)/(2*n); od; t1; end;
spec := [ C, {B=Union(Z,Prod(B,B)), C=Cycle(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)];
-
a[n_] := Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 11 2012 *)
-
C(n, k)=binomial(n,k);
a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
/* or, second formula: */
/* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d-1,d)) / n ); */
/* Joerg Arndt, Oct 21 2012 */
-
def A003239(n):
if n == 0: return 1
return sum(euler_phi(n/d)*binomial(2*d, d)/(2*n) for d in divisors(n))
print([A003239(n) for n in (0..29)]) # Peter Luschny, Dec 10 2020
Sequence corrected and extended by Roderick J. Fletcher (yylee(AT)mail.ncku.edu.tw), Aug 1997
A137729
Number of circular permutations of the multiset {1,1,2,2,...,n,n} (up to rotations).
Original entry on oeis.org
1, 1, 2, 16, 318, 11352, 623760, 48648960, 5108105520, 694702028160, 118794043549440, 24946749109094400, 6311527524161798400, 1893458257242791500800, 664603848292138865510400, 269829162406607158901145600
Offset: 0
A118644
Number of distinct (n red, n blue, n green)-bead necklaces.
Original entry on oeis.org
1, 2, 16, 188, 2896, 50452, 953056, 19003476, 394397776, 8439756848, 185033251616, 4137181680700, 94020327215200, 2166105078791448, 50489825388328608, 1188777328563914488, 28236363841989180496, 675879582290807439796, 16289254212704277185152
Offset: 0
A207816
Number of distinct necklaces with n red, n green, n blue and n white beads.
Original entry on oeis.org
1, 6, 318, 30804, 3941598, 586637256, 96197661156, 16875655269948, 3111284141045598, 595909785174057204, 117634021777132574568, 23797087019979071174580, 4912693780461352534397604, 1031629572413246016139181544, 219809927417367534490107035244, 47426945434432859336092700072304
Offset: 0
For n=1, a(1)=6 since for four beads necklaces with each bead from each of the four colors say (R,G,B,W), we can arrange as following, [R,G,B,W], [R,G,W,B], [R,B,G,W], [R,B,W,G], [R,W,G,B] and [R,W,B,G].
-
with(combinat): with(numtheory):
# This formula comes from Polya Counting Theorem:
# Z(C_n) = add(phi(d)*(a_d)^(n/d), d in divisors(n))/n;
PolyaBrace:= proc(S) option remember; local n, s, d;
n:= add(s, s=S);
add(phi(d) *PolyaCoeff(d, S), d=divisors(n))/n
end:
# Find coeff of prod(a[i]^s[i], i=1..n) of a_d^(n/d) (symmetric function)
PolyaCoeff:= proc(d, S) option remember; local n, pow, s;
n:= add(s, s=S);
pow:= n/d;
if {seq(s mod d, s = S)} = {0}
then multinomial(pow, seq(s/d, s = S))
else 0
fi:
end:
a:= n-> `if`(n=0, 1, PolyaBrace([n$4])):
seq(a(n), n=0..20);
-
a[n_] := DivisorSum[n, EulerPhi[n/#] (4#)!/(#!^4 * 4n)&]; a[0]=1;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)
A208184
Number of distinct n-colored necklaces with 3 beads per color.
Original entry on oeis.org
1, 1, 4, 188, 30804, 11211216, 7623616080, 8690922240480, 15391623287043360, 40018220546304026880, 146226577876194816241920, 725283826265926287362419200, 4746982642910487550771226611200, 40045545575592872978305843519334400
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {000}.
a(2) = 4: {000111, 001011, 010011, 010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(3/d) *(n*d)!/(d!^n *3*n), d={1, 3})):
seq(a(n), n=0..20);
-
Flatten[{1, Table[(3*n)!/(3*n*6^n) + 2*(n-1)!/3, {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 23 2015 *)
A208185
Number of distinct n-colored necklaces with 4 beads per color.
Original entry on oeis.org
1, 1, 10, 2896, 3941598, 15277017432, 135277939358160, 2374127830286012160, 74701932179186551241520, 3911393168902074440088524160, 321715999535364496261149134365440, 39702971502659332476270701578180454400, 7081620512071831837127802029303335215878400
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {0000}.
a(2) = 10: {00001111, 00010111, 00100111, 01000111, 00011011, 00110011, 00101011, 01010011, 01001011, 01010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(4/d) *(n*d)!/(d!^n *4*n), d={1,2,4})):
seq(a(n), n=0..15);
-
Flatten[{1, Table[(4*n)!/(4*n*24^n) + (n-1)!/2 + (2*n-1)!/2^(n+1), {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 23 2015 *)
A208186
Number of distinct n-colored necklaces with 5 beads per color.
Original entry on oeis.org
1, 1, 26, 50452, 586637256, 24934429725024, 2961088201992945120, 823940558733748910598720, 474389544274867071519255599040, 515190840198859838606483730223480320, 982409170121762644481286121423409538362880, 3106878824601775580798512171862746898249905228800
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {00000}.
a(2) = 26: {0000011111, ..., 0101010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(5/d) *(n*d)!/(d!^n *5*n), d={1, 5})):
seq(a(n), n=0..12);
A208187
Number of distinct n-colored necklaces with 6 beads per color.
Original entry on oeis.org
1, 1, 80, 953056, 96197661156, 45695805591924048, 74171603795480180204640, 333504309246734399617946903040, 3581026866351385580856518554063502880, 82211352663724607444625251063583157979101440, 3704235885150602243096407788053997013140363354216960
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {000000}.
a(2) = 80: {000000111111, ..., 010101010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(6/d) *(n*d)!/(d!^n *6*n), d={1, 2, 3, 6})):
seq(a(n), n=0..12);
A208188
Number of distinct n-colored necklaces with 7 beads per color.
Original entry on oeis.org
1, 1, 246, 19003476, 16875655269948, 90784545100668913392, 2041012695880532470281654960, 150277870737901828652705825755721760, 30495546426686489361833408314854897254404320, 14997592385781765578538605874290442908069285068834560
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {0000000}.
a(2) = 246: {00000001111111, ..., 01010101010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(7/d) *(n*d)!/(d!^n *7*n), d={1, 7})):
seq(a(n), n=0..12);
A208189
Number of distinct n-colored necklaces with 8 beads per color.
Original entry on oeis.org
1, 1, 810, 394397776, 3111284141045598, 191417861328837588057432, 60192781171721237282811209918160, 73288704867601350013562616043249358012160, 283839436431731355577562936415156522873876247241520, 3019803425783983174717206845130801781814711776972408728524160
Offset: 0
a(0) = 1: the empty necklace.
a(1) = 1: {00000000}.
a(2) = 810: {0000000011111111, ..., 0101010101010101}.
-
with(numtheory);
a:= n-> `if`(n=0, 1, add(phi(8/d) *(n*d)!/(d!^n *8*n), d={1, 2, 4, 8})):
seq(a(n), n=0..10);
Showing 1-10 of 15 results.
Comments