cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118694 Semiprimes which are divisible by the product of their digits.

Original entry on oeis.org

4, 6, 9, 15, 111, 115, 1111, 1115, 11111, 1111111, 1111117, 111111115, 1111113111, 1111711111, 11111111111, 111111111115, 1111111111113, 1111117111111, 11171111111111, 1111111111711111, 1111711111111111, 11111111111111111
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 20 2006

Keywords

Comments

The Mathematica coding is only good for multidigital, nonrepunits numbers. Obviously 4, 6 and 9 are members and so are A102782: Repunit semiprimes. - Robert G. Wilson v, Jun 10 2006

Examples

			115 is in the sequence because (1) it is a semiprime, (2) the product of its digits is 1*1*5=5 and (3) 115 is divisible by 5.
		

Crossrefs

Programs

  • Maple
    sp:= proc(n) evalb(2=add (i[2], i=ifactors(n) [2])) end: dp:= proc(n) local m; m:=n; 1; while m<>0 do %*irem(m, 10, 'm') od; % end: select(x-> irem(x, dp(x))=0 and sp(x), sort([{4, 6, 9, seq(seq(seq(parse(cat(1$(k-j), t, 1$j)), j=0..k), t=[1, 3, 5, 7]), k=1..20)} []]))[]; # Alois P. Heinz, Nov 17 2009
  • Mathematica
    lst = {}; Do[ p = Times @@ IntegerDigits@n; If[ PrimeQ@p && PrimeQ[n/p], AppendTo[lst, n]; Print[n]], {n, 275*10^6}]; lst (* Robert G. Wilson v, Jun 10 2006 *)
  • PARI
    A007954(n)= { local(resul,ncpy); if(n<10, return(n) ); ncpy=n; resul = ncpy % 10; ncpy = (ncpy - ncpy%10)/10; while( ncpy > 0, resul *= ncpy %10; ncpy = (ncpy - ncpy%10)/10; ); return(resul); } { for(n=4,50000000, if( bigomega(n)==2, dr=A007954(n); if(dr !=0 && n % dr == 0, print1(n,","); ); ); ); } \\ R. J. Mathar, May 23 2006

Formula

a(n) = A001358(k): A007954(a(n)) | a(n). - R. J. Mathar, May 23 2006

Extensions

More terms from R. J. Mathar, May 23 2006
a(12) from Robert G. Wilson v, Jun 10 2006
Further terms from Alois P. Heinz, Nov 17 2009

A243008 Triangular numbers divisible by the square of the sum of their digits.

Original entry on oeis.org

1, 10, 3240, 3321, 13041, 13203, 15400, 65341, 80200, 90100, 161028, 210276, 260281, 265356, 266085, 300700, 346528, 500500, 937765, 947376, 1043290, 1228528, 1313010, 1628110, 2049300, 2390391, 2421100, 3357936, 3746953, 4020030, 5250420, 6641190, 6857956, 6939675
Offset: 1

Views

Author

K. D. Bajpai, Aug 20 2014

Keywords

Comments

Intersection of A000217 and A072081.

Examples

			a(3) = 3240 = 80 * (80 + 1)/2 is a triangular number. Since 3240 is divisible by (3 + 2 + 4 + 0)^2 = 81, it appears in the sequence.
a(3) = 3321 = 81 * (81 + 1)/2 is a triangular number. Since 3321 is divisible by (3 + 3 + 2 + 1)^2 = 81, it appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 10000}], Divisible[#, Plus @@ IntegerDigits[#]^2] &]
  • PARI
    for(n=1,10^4,s=n*(n+1)/2;if(s%(sumdigits(s)^2)==0,print1(s,", "))) \\ Derek Orr, Aug 23 2014
Showing 1-2 of 2 results.