A118705 a(n) = determinant of n X n circulant matrix whose first row is the first n triangular numbers A000217(0), A000217(1), ... A000217(n-1).
0, -1, 28, -1360, 105500, -12051585, 1908871832, -400855203840, 107838796034520, -36175347978515625, 14806446317943766420, -7263073394295238840320, 4206546078973080241293076, -2840250692354398785860048105, 2211476237421629752792968750000
Offset: 1
Examples
a(2) = - 1 because of the determinant -1 = | 0, 1 | | 1, 0 |. a(4) = -1360 = determinant |0,1,3,6| |6,0,1,3| |3,6,0,1| |1,3,6,0|.
Links
- Robert Israel, Table of n, a(n) for n = 1..226
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Crossrefs
Programs
-
Maple
f:= proc(n) uses LinearAlgebra;local i; Determinant(Matrix(n, shape=Circulant[[seq(i*(i+1)/2, i=0..n-1)]])) end proc: map(f, [$1..30]); # Robert Israel, Jan 25 2023
-
Mathematica
r[n_] := r[n] = Table[k(k+1)/2, {k, 0, n-1}]; M[n_] := Table[RotateRight[r[n], m-1], {m, 1, n}]; a[n_] := Det[M[n]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 11 2023 *)
Formula
a(n) = (-1)^(n-1)*n^(n-2)*(n+1)*(n-1)*((n+1)^n-(n-1)^n)/(6*2^n). [Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 03 2010]
Extensions
More terms from Alois P. Heinz, Mar 16 2017