A118735 Numbers k such that 2^k and 3^k have odd digit sum.
0, 4, 5, 10, 16, 18, 20, 22, 25, 27, 30, 31, 34, 35, 39, 48, 52, 53, 59, 62, 63, 66, 68, 69, 81, 87, 89, 92, 99, 100, 101, 105, 108, 114, 118, 119, 121, 127, 131, 133, 141, 145, 146, 150, 153, 158, 159, 160, 165, 167, 169, 175, 186, 188, 191, 196, 197, 201, 202, 203
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[0, 206], And @@ ((Mod[ Plus @@ IntegerDigits[ # ], 2] == 1 &) /@ {2^#, 3^#}) &] (* Ray Chandler, Jun 10 2006 *) odsQ[n_]:=AllTrue[Total[IntegerDigits[#]]&/@{2^n,3^n},OddQ]; Select[ Range[ 0,250],odsQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 05 2021 *)
Extensions
Extended by Ray Chandler, Jun 10 2006