cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118757 Permutation of the natural numbers such that the Levenshtein distance between decimal representations of successive terms is 1, and a(n+1) is the largest such m < a(n) if it exists, or else the smallest such m > a(n); a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 78, 77
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2006

Keywords

Comments

a(n) = A003100(n) for n <= 100, a(100) = A003100(100) = 190, but a(101) = 180, A003100(101) = 191.
A118763 is the lexicographically smallest permutation with LevenshteinDistance[Base10](a(n),a(n+1)) = 1. - M. F. Hasler, Sep 12 2018

Crossrefs

Cf. A118763.
Iterated twice: A118759(n) := a(a(n)).
Fixed points: A118761 = { n | n = a(n) }.
Inverse: A118758.
First difference: A118762(n) := a(n+1) - a(n).

Formula

a(n+1) = if U(n) is empty then Min(V(n)) else Max(U(n)), where the sets U and V are defined as: U(m) = {x < a(m) : LD10(a(m),x) = 1 and a(k) <> x for 0 <= k < m}, V(m) = {x > a(m) | LD10(a(m),x) = 1 and a(k) <> x for 0 <= k < m} with LD10 = Levenshtein distance in decimal representations of natural numbers.
a(n) = A118758(n) (self-inverse) for n < 100.

Extensions

Correct definition and other edits by M. F. Hasler, Sep 12 2018

A102491 Numbers whose base-20 representation can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

a(n) = A118761(n) for n<=50. - Reinhard Zumkeller, May 01 2006

Crossrefs

Complement of A102492; Cf. A102487, A102489, A102493. Cf. A037454, A037462, A007091.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102491 n = a102491_list !! (n-1)
    a102491_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Maple
    seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
  • PARI
    isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
    
  • PARI
    a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
  • Python
    A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
    

Formula

From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(n+1) = n + 1/2*Sum_{k >= 1} 20^k*floor(n/10^k). Cf. A037454, A037462 and A007091.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016

A118758 Inverse of A118757.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 78, 77
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2006

Keywords

Comments

Permutation of the natural numbers with fixed points A118761: a(A118761(n)) = A118761(n);
A118760(n) = a(a(n)); a(n) = A118757(n) for n < 100.

Crossrefs

Cf. A118764.

A024657 n written in fractional base 10/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 221, 222, 223, 224, 225, 226, 227
Offset: 0

Views

Author

Keywords

Comments

To represent a number in base b, if a digit exceeds b-1, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
Also numbers which are written the same in base 20/2 as in base 10. The sequence consists of numbers which have digits in {0,2,4,6,8} except that the unit digit can be any from {0,1,2,3,4,5,6,7,8,9} - Henry Bottomley, Nov 17 2000

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, 10 * a[2 * Floor[n/10]] + Mod[n, 10]]; Array[a, 50, 0] (* Amiram Eldar, Aug 02 2025 *)
  • PARI
    a(n) = if(n == 0, 0, 10 * a(n\10 * 2) + n % 10); \\ Amiram Eldar, Aug 02 2025

Formula

a(n) = A118761(n+1) for n < 50. - Reinhard Zumkeller, May 01 2006

A118767 Fixed points of permutations A118763, A118764, A118765 and A118766.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 49, 69, 89
Offset: 1

Views

Author

Reinhard Zumkeller, May 01 2006

Keywords

Comments

A118763(a(n)) = A118764(a(n)) = A118765(a(n)) = A118766(a(n)) = a(n).
No more terms less than 10^4. Looking at the pattern mod 9, I conjecture that there will be more terms past 10^8. - Joshua Zucker, May 14 2006

Crossrefs

Cf. A118761.
Showing 1-5 of 5 results.