A118781 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive semiprimes.
-196, 272, -251, 149, -423, 909, -408, -452, 958, -123, -112, -460, 84, -271, -187, -162, 63, 7, 101, -483, -133, 205, -860, -46, 339, 1178, 848, 366, 1084, 719, -384, 334, -2736, -984, -1912, 214, 34, 40, -1735, -60, 64, -2263, -3468, 5795, 69, 132, 3007, 256, 2130, 3428
Offset: 1
Examples
a(1) = -196 because the determinant of the first continuous block of 9 semiprimes is: | 4. 6. 9.| |10. 14. 15.| |21. 22. 25.|. a(9) = 958 because the determinant of the 9th continuous block of 9 semiprimes is: |25. 26. 33.| |34. 35. 38.| |39. 46. 49.|. a(50) = 3428 because the determinant of the 50th continuous block of 9 semiprimes is: |146. 155. 158.| |159. 161. 166.| |169. 177. 178.|.
Programs
-
Maple
A118781 := proc(n) local A,i,r,c ; A := Matrix(3,3) ; i := n ; for r from 1 to 3 do for c from 1 to 3 do A[r,c] := A001358(i) ; i := i+1 ; end do: end do: LinearAlgebra[Determinant](A) ; end proc: # R. J. Mathar, May 05 2013
-
Mathematica
Det/@(Partition[#,3]&/@(Partition[Select[Range[200],PrimeOmega[ #] == 2&],9,1])) (* Harvey P. Dale, Nov 29 2015 *)
Formula
a(n) = s(n)*s(n+4)*s(n+8) - s(n)*s(n+5)*s(n+7) - s(n+1)*s(n+3)*s(n+8) + s(n+1)*s(n+5)*s(n+6) + s(n+2)*s(n+3)*s(n+7) - s(n+2)*s(n+4)*s(n+6) where s(n) = A001358(n) is the n-th semiprime.
Comments