A118799 Determinants of 4 X 4 matrices of 16 consecutive primes.
880, -448, -1472, -240, 2480, -1352, -4128, -96, 2736, -2520, 120, 1080, 4288, 4880, 4600, 13368, 7056, 14560, 2960, 13320, 0, 24864, -11096, -24264, 0, -9168, -2128, -15792, 0, 18120, -5248, 6384, -21840, -38776, -20480, 20176, -72896, -69200, 40080, -37632
Offset: 1
Examples
a(1) = 880 = | 2 3 5 7| |11 13 17 19| |23 29 31 37| |41 43 47 53|. a(10) = -2520 = |29 31 37 41| |43 47 53 59| |61 67 71 73| |79 83 89 97|. a(21) = 0 = | 73 79 83 89| | 97 101 103 107| |109 113 127 131| |137 139 149 151|.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A118799 := proc(n) local A,i,r,c ; A := Matrix(4,4) ; i := n ; for r from 1 to 4 do for c from 1 to 4 do A[r,c] := ithprime(i) ; i := i+1 ; end do: end do: LinearAlgebra[Determinant](A) ; end proc: # R. J. Mathar, May 05 2013
-
Mathematica
Module[{nn=60,prs},prs=Prime[Range[nn]];Table[Det[Partition[ Take[ prs, {n,n+15}],4]],{n,nn-15}]] (* Harvey P. Dale, Apr 29 2016 *)
-
PARI
a(n) = matdet(matrix(4,4,i,j,prime((n+j-1)+4*(i-1)))); \\ Michel Marcus, Jan 25 2021
Comments