A118867 Numbers n such that 2^n, 3^n and 5^n have even digit sum.
15, 37, 46, 47, 64, 71, 83, 84, 90, 102, 106, 107, 116, 120, 122, 135, 149, 154, 168, 173, 179, 180, 181, 185, 193, 195, 198, 200, 210, 222, 224, 229, 232, 239, 242, 248, 265, 289, 299, 304, 310, 327, 330, 332, 333, 347, 356, 364, 367, 369, 375, 383, 402, 407
Offset: 1
Examples
{2^15,3^15,5^15}={32768,14348907,30517578125} with even digit sum {26,36,44}.
Crossrefs
Subsequence of A118734.
Programs
-
Mathematica
Select[Range[500],AllTrue[Total/@(IntegerDigits/@{2^#,3^#,5^#}),EvenQ]&] (* Harvey P. Dale, Mar 23 2023 *)
-
PARI
isok(n) = !(sumdigits(2^n) % 2) && !(sumdigits(3^n) % 2) && !(sumdigits(5^n) % 2); \\ Michel Marcus, Oct 10 2013