A118872 Numbers k such that digit sum of 3^k is a power of 3.
0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 16, 17, 21, 27, 31, 35, 36, 39, 114, 119, 973, 1005, 1010, 1025, 3006, 3029, 3040, 9128, 9215, 9227, 9316, 27431, 27442, 27515, 27519, 27554, 82632, 82746, 82763, 82784, 83111, 246838, 247206, 247388, 247406, 247447, 741310, 742154
Offset: 1
Examples
3^39 = 4052555153018976267 with digit sum 81 = 3^4, so 39 is a term.
Crossrefs
Cf. A004166 (sum of digits of 3^n).
Programs
-
Mathematica
Do[If[IntegerQ[Log[3, Plus @@ IntegerDigits[3^n]]], Print[n]], {n, 0, 677750}];
-
PARI
is(n) = my(s = sumdigits(3^n)); s == 3^logint(s, 3) \\ David A. Corneth, Nov 23 2022
Formula
A067500(n) = 3^a(n).
Extensions
Extended by Ray Chandler, Jun 16 2006
a(47) and a(48) from Jon E. Schoenfield, Nov 25 2022
Comments