cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118872 Numbers k such that digit sum of 3^k is a power of 3.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 16, 17, 21, 27, 31, 35, 36, 39, 114, 119, 973, 1005, 1010, 1025, 3006, 3029, 3040, 9128, 9215, 9227, 9316, 27431, 27442, 27515, 27519, 27554, 82632, 82746, 82763, 82784, 83111, 246838, 247206, 247388, 247406, 247447, 741310, 742154
Offset: 1

Views

Author

Zak Seidov, May 24 2006

Keywords

Comments

a(47) > 677750. - Ray Chandler, Jun 16 2006
a(47) <= 741310. If a(47) < 741310 then a(47) < 720000. a(48) <= 742154. If a(48) < 741310 then a(48) < 720000. - David A. Corneth, Nov 23 2022

Examples

			3^39 = 4052555153018976267 with digit sum 81 = 3^4, so 39 is a term.
		

Crossrefs

Cf. A004166 (sum of digits of 3^n).

Programs

  • Mathematica
    Do[If[IntegerQ[Log[3, Plus @@ IntegerDigits[3^n]]], Print[n]], {n, 0, 677750}];
  • PARI
    is(n) = my(s = sumdigits(3^n)); s == 3^logint(s, 3) \\ David A. Corneth, Nov 23 2022

Formula

A067500(n) = 3^a(n).

Extensions

Extended by Ray Chandler, Jun 16 2006
a(47) and a(48) from Jon E. Schoenfield, Nov 25 2022