A118873 Determinant of n-th continuous block of 4 consecutive squares of primes.
-29, -136, -1704, -6288, -5160, -14928, 52080, -97968, -84000, 98112, -524400, -84048, 637488, 231288, -1558440, -343200, 844152, -2799840, 1152360, 1469160, -783240, 4153800, -4254000, -11947320, -498768, -264360, -559248, 32952432, -2061360, -37128408, -10466400, 18355512
Offset: 1
Examples
a(1) = -29 = | 4 9| |25 49|.
Programs
-
Maple
a:= n-> LinearAlgebra[Determinant](Matrix(2, (i,j)-> ithprime(n+2*i-3+j)^2)): seq(a(n), n=1..32); # Alois P. Heinz, Jan 25 2021
-
Mathematica
m = 32; p = Prime[Range[m + 3]]^2; Table[Det @ Partition[p[[n ;; n + 3]], 2], {n, 1, m}] (* Amiram Eldar, Jan 25 2021 *)
-
PARI
a(n) = prime(n)^2*prime(n+3)^2 - prime(n+1)^2*prime(n+2)^2; \\ Michel Marcus, Jan 25 2021
Formula
a(n) = prime(n)^2*prime(n+3)^2 - prime(n+1)^2*prime(n+2)^2.
Comments