A118887 Number of ways to place n objects with weights 1,2,...,n evenly spaced around the circumference of a circular disk so that the disk will exactly balance on the center point.
0, 0, 0, 0, 0, 2, 0, 0, 0, 24, 0, 732, 0, 720, 48, 0, 0
Offset: 1
Examples
The smallest n for which a solution exists is n=6 with 4 solutions: ...........Weight ......1..2..3..4..5..6 .Count...at.position ..1...1..4..5..2..3..6 ..2...1..5..3..4..2..6 ..3...1..6..2..4..3..5 ..4...1..6..3..2..5..4 Configurations 1 is the mirror image of configuration 4, ditto for configurations 2 and 3. Therefore a(6)=2.
Links
- Andrew Bernoff, Bernoff's Puzzler, MuddMath Newsletter Volume 4, No. 1, Page 10, Spring 2005
- Marius Munteanu and Laura Munteanu, Rational equiangular polygons, Applied Math., 4 (2013), 1460-1465.
- Hugo Pfoertner, Balanced weights on circle (Tables of configurations)
- G. J. Woeginger, Nothing new about equiangular polygons, Amer. Math. Monthly, 120 (2013), 849-850.
Crossrefs
Programs
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; Table[eLst=E^(2.*Pi*I*Range[n]/n); Count[(Permutations[Range[n]]), q_List/;Chop[q.eLst]===0]/(2n), {n,10}] (* very slow for n>10 *) (* T. D. Noe, May 05 2006 *)
Comments