A118896 Number of powerful numbers <= 10^n.
1, 4, 14, 54, 185, 619, 2027, 6553, 21044, 67231, 214122, 680330, 2158391, 6840384, 21663503, 68575557, 217004842, 686552743, 2171766332, 6869227848, 21725636644, 68709456167, 217293374285, 687174291753, 2173105517385, 6872112993377, 21731852479862, 68722847672629, 217322225558934, 687236449779456, 2173239433013146
Offset: 0
Keywords
Links
- Charles R Greathouse IV and Hiroaki Yamanouchi, Table of n, a(n) for n = 0..45 (terms a(0)-a(32) from Charles R Greathouse IV)
- Michael Filaseta and Ognian Trifonov, The distribution of squarefull numbers in short intervals, Acta Arithmetica 67 (1994), pp. 323-333.
- Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math. 2:1 (1958), p. 88-98.
- Eric Weisstein's World of Mathematics, Powerful Number
Programs
-
Maple
f:= m -> nops({seq(seq(a^2*b^3, b=1..floor((m/a^2)^(1/3))),a=1..floor(sqrt(m)))}): seq(f(10^n),n=0..10); # Robert Israel, Aug 12 2014
-
Mathematica
f[n_] := Block[{max = 10^n}, Length@ Union@ Flatten@ Table[ a^2*b^3, {b, max^(1/3)}, {a, Sqrt[ max/b^3]}]]; Array[f, 13, 0] (* Robert G. Wilson v, Aug 11 2014 *) powerfulNumberPi[n_] := Sum[ If[ SquareFreeQ@ i, Floor[ Sqrt[ n/i^3]], 0], {i, n^(1/3)}]; Array[ powerfulNumberPi[10^#] &, 27, 0] (* Robert G. Wilson v, Aug 12 2014 *)
-
PARI
a(n)=n=10^n;sum(k=1, floor((n+.5)^(1/3)), if(issquarefree(k), sqrtint(n\k^3))) \\ Charles R Greathouse IV, Sep 23 2008
-
Python
from math import isqrt from sympy import integer_nthroot, factorint def A118896(n): m = 10**n return sum(isqrt(m//x**3) for x in range(1,integer_nthroot(m,3)[0]+1) if max(factorint(x).values(),default=0)<=1) # Chai Wah Wu, May 13 2023
-
Python
# faster program def A118896(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) m, c, l = 10**n, 0, 0 j = isqrt(m) while j>1: k2 = integer_nthroot(m//j**2,3)[0]+1 w = squarefreepi(k2-1) c += j*(w-l) l, j = w, isqrt(m//k2**3) c += squarefreepi(integer_nthroot(m,3)[0])-l return c # Chai Wah Wu, Sep 09 2024
Formula
Pi(x) = Sum_{i=1..x^(1/3)} floor(sqrt(x/i^3)) only if i is squarefree. - Robert G. Wilson v, Aug 12 2014
Extensions
More terms from T. D. Noe, May 09 2006
a(13)-a(24) from Charles R Greathouse IV, Sep 23 2008
a(25)-a(29) from Charles R Greathouse IV, May 30 2011
a(30) from Charles R Greathouse IV, May 31 2011
Comments