A001694
Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).
Original entry on oeis.org
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000
Offset: 1
1 is a term because for every prime p that divides 1, p^2 also divides 1.
2 is not a term since 2 divides 2 but 2^2 does not.
4 is a term because 2 is the only prime that divides 4 and 2^2 does divide 4. - _N. J. A. Sloane_, Jan 16 2022
- G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer. 37 (1983), 277-307.
- Aleksandar Ivić, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
- Richard A. Mollin, Quadratics, CRC Press, 1996, Section 1.6.
- Aine NiShe, Commutativity and Generalisations in Finite Groups, Ph.D. Thesis, University College Cork, 2000.
- Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 9.1 Potente Zahlen, pp. 241-247.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 54, exercise 10 (in the third edition 2015, p. 63, exercise 70).
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, terms 1001..5000 from G. C. Greubel)
- Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math. 2:1 (1958), pp. 88-98.
- Chris Bispels, Matthew Cohen, Joshua Harrington, Joshua Lowrance, Kaelyn Pontes, Leif Schaumann, and Tony W. H. Wong, A further investigation on covering systems with odd moduli, arXiv:2507.16135 [math.NT], 2025. See p. 3.
- Valentin Blomer, Binary quadratic forms with large discriminants and sums of two squareful numbers II, Journal of the London Mathematical Society 71:1 (2005), pp. 69-84.
- Chris K. Caldwell, Powerful Numbers.
- Tsz Ho Chan, Arithmetic Progressions Among Powerful Numbers, J. Int. Seq., Vol. 26 (2023), Article 23.1.1.
- Tsz Ho Chan, A note on three consecutive powerful numbers, arXiv:2503.21485 [math.NT], 2025.
- Jean-Marie De Koninck, Nicolas Doyon, and Florian Luca, Powerful Values of Quadratic Polynomials, J. Int. Seq. 14 (2011), Article 11.3.3.
- Paul Erdős and George Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), 7 (1935), 95-102. [Zahlen i-ter Art, p. 101]
- Solomon W. Golomb, Powerful numbers, Amer. Math. Monthly, Vol. 77 (1970), 848-852.
- K. Schneider, PlanetMath.org, Squarefull Number.
- Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
- D. Suryanarayana and R. Sita Rama Chandra Rao, The distribution of square-full integers, Ark. Mat., Volume 11, Number 1-2 (1973), 195-201.
- Eric Weisstein's World of Mathematics, Powerful Number.
- Eric Weisstein's World of Mathematics, Squareful.
- Wikipedia, Powerful number.
- Index entries for sequences related to powerful numbers.
Cf.
A007532 (Powerful numbers, definition (2)),
A005934,
A005188,
A003321,
A014576,
A023052 (Powerful numbers, definition (3)),
A046074,
A013929,
A076871,
A258599,
A001248,
A112526,
A168363,
A224866,
A261883,
A300717.
-
a001694 n = a001694_list !! (n-1)
a001694_list = filter ((== 1) . a112526) [1..]
-- Reinhard Zumkeller, Nov 30 2012
-
isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
A001694 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA001694(a) then return a; end if; end do; end if; end proc:
seq(A001694(n),n=1..20) ; # R. J. Mathar, Jun 07 2011
-
Join[{1}, Select[ Range@ 1250, Min@ FactorInteger[#][[All, 2]] > 1 &]]
(* Harvey P. Dale, Sep 18 2011; modified by Robert G. Wilson v, Aug 11 2014 *)
max = 10^3; Union@ Flatten@ Table[a^2*b^3, {b, max^(1/3)}, {a, Sqrt[max/b^3]}] (* Robert G. Wilson v, Aug 11 2014 *)
nextPowerfulNumber[n_] := Block[{r = Range[ Floor[1 + n^(1/3)]]^3}, Min@ Select[ Sort[ r*Floor[1 + Sqrt[n/r]]^2], # > n &]]; NestList[ nextPowerfulNumber, 1, 55] (* Robert G. Wilson v, Aug 16 2014 *)
-
isA001694(n)=n=factor(n)[,2];for(i=1,#n,if(n[i]==1,return(0)));1 \\ Charles R Greathouse IV, Feb 11 2011
-
list(lim,mn=2)=my(v=List(),t); for(m=1,sqrtnint(lim\1,3), t=m^3; for(n=1,sqrtint(lim\t), listput(v,t*n^2))); Set(v) \\ Charles R Greathouse IV, Jul 31 2011; edited Sep 22 2015
-
is=ispowerful \\ Charles R Greathouse IV, Nov 13 2012
-
from sympy import factorint
A001694 = [1]+[n for n in range(2,10**6) if min(factorint(n).values()) > 1]
# Chai Wah Wu, Aug 14 2014
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A001694(n):
def squarefreepi(n):
return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x,3)[0])-l
return c
return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
-
sloane.A001694.list(54) # Peter Luschny, Feb 08 2015
A052486
Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power.
Original entry on oeis.org
72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, 6075
Offset: 1
a(3)=200 because 200=2^3*5^2, both 3 and 2 are greater than 1, and the highest common factor of 3 and 2 is 1.
Factorizations of a(1) to a(20):
72 = 2^3 3^2, 108 = 2^2 3^3, 200 = 2^3 5^2, 288 = 2^5 3^2,
392 = 2^3 7^2, 432 = 2^4 3^3, 500 = 2^2 5^3, 648 = 2^3 3^4,
675 = 3^3 5^2, 800 = 2^5 5^2, 864 = 2^5 3^3, 968 = 2^3 11^2,
972 = 2^2 3^5, 1125 = 3^2 5^3, 1152 = 2^7 3^2, 1323 = 3^3 7^2,
1352 = 2^3 13^2, 1372 = 2^2 7^3, 1568 = 2^5 7^2, 1800 = 2^3 3^2 5^2.
Examples for a(n) = (s(n))^2 * f(n): (see above comment)
s(n) = 6, 6, 10, 12, 14, 12, 10, 18, 15, 20, 12, 22, 18, 15, 24, 21,
f(n) = 2, 3, 2, 2, 2, 3, 5, 2, 3, 2, 6, 2, 3, 5, 2, 3,
-
filter:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
select(filter,[$1..10000]); # Robert Israel, Aug 11 2014
-
achillesQ[n_] := Block[{ls = Last /@ FactorInteger@n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 5500, achillesQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
-
is(n)=my(f=factor(n)[,2]); n>9 && vecmin(f)>1 && gcd(f)==1 \\ Charles R Greathouse IV, Sep 18 2015, replacing code by M. F. Hasler, Sep 23 2010
-
from math import gcd
from itertools import count, islice
from sympy import factorint
def A052486_gen(startvalue=1): # generator of terms >= startvalue
return (n for n in count(max(startvalue,1)) if (lambda x: all(e > 1 for e in x) and gcd(*x) == 1)(factorint(n).values()))
A052486_list = list(islice(A052486_gen(),20)) # Chai Wah Wu, Feb 19 2022
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A052486(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x+1, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
return c
return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Example edited by Mac Coombe (mac.coombe(AT)gmail.com), Sep 18 2010
A362973
The number of cubefull numbers (A036966) not exceeding 10^n.
Original entry on oeis.org
1, 2, 7, 20, 51, 129, 307, 713, 1645, 3721, 8348, 18589, 41136, 90619, 198767, 434572, 947753, 2062437, 4480253, 9718457, 21055958, 45575049, 98566055, 213028539, 460160083, 993533517, 2144335391, 4626664451, 9980028172, 21523027285, 46408635232, 100053270534
Offset: 0
There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2.
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
- Chai Wah Wu, Table of n, a(n) for n = 0..36
- Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
- A. Ivić and P. Shiu, The distribution of powerful integers, Illinois Journal of Mathematics, Vol. 26, No. 4 (1982), pp. 576-590.
- Ekkehard Krätzel, On the distribution of square-full and cube-full numbers, Monatshefte für Mathematik, Vol. 120, No. 2 (1995), pp. 105-119.
- P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
- P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
-
a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0]
-
from math import gcd
from sympy import factorint, integer_nthroot
def A362973(n):
m, c = 10**n, 0
for x in range(1,integer_nthroot(m,5)[0]+1):
if all(d<=1 for d in factorint(x).values()):
for y in range(1,integer_nthroot(z:=m//x**5,4)[0]+1):
if gcd(x,y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**4,3)[0]
return c # Chai Wah Wu, May 11-13 2023
A376092
10^n-th powerful number.
Original entry on oeis.org
1, 49, 3136, 253472, 23002083, 2200079025, 215523459072, 21348015504200, 2125390162618116, 212104218976916644, 21190268970925690248, 2118092209873957381248, 211765852717674823741924, 21174572668805230623003225, 2117363857447354911021280900
Offset: 0
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A376092(n):
def squarefreepi(n):
return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
m = 10**n
def f(x):
c, l = m+x, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x,3)[0])-l
return c
return bisection(f,m,m)
A380254
Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).
Original entry on oeis.org
1, 1, 2, 7, 22, 85, 330, 1433, 6450, 31555, 172023, 964560, 5891154, 37807505, 248226019, 1702890101, 12401685616, 95277158949, 744210074157, 6091922351106, 51332717836692, 438592279944173, 3898316990125822, 35515462315592564, 335052677538616216, 3299888425002527366
Offset: 0
Let P = A002110 and let s = A001694.
a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1.
a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2.
a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6.
a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30.
a(4) = 22 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200} contains k <= 210, etc.
-
f[x_] := Sum[If[SquareFreeQ[ii], Floor[Sqrt[x/ii^3]], 0], {ii, x^(1/3)}];
Table[f[#[[k + 1]]], {k, 0, Length[#] - 1}] &[
FoldList[Times, 1, Prime[Range[12] ] ] ] (* function f after Robert G. Wilson v at A118896 *)
-
from math import isqrt
from sympy import primorial, integer_nthroot, mobius
def A380254(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
if n == 0: return 1
m = primorial(n)
c, l, j = squarefreepi(integer_nthroot(m, 3)[0]), 0, isqrt(m)
while j>1:
k2 = integer_nthroot(m//j**2,3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(m//k2**3)
return c-l # Chai Wah Wu, Jan 24 2025
A363170
The number of powerful abundant numbers (A363169) not exceeding 10^n.
Original entry on oeis.org
0, 3, 23, 82, 297, 1000, 3268, 10534, 33799, 107901, 343155, 1090189, 3460380, 10970774, 34749182, 109991778, 348006756, 1101058505, 3483105232, 11017518803
Offset: 1
a(2) = 3 since there are 3 powerful abundant numbers not exceeding 10^2: 36, 72 and 100.
-
seq[nmax_] := Module[{c = 0, p = 10, k = 1, kmax = 10^nmax, s = {}}, While[k <= kmax, If[DivisorSigma[-1, k] > 2 && Min[FactorInteger[k][[;;, 2]]] > 1, c++]; If[k == p, AppendTo[s, c]; p *= 10]; k++]; s]; seq[5]
-
is(n) = { my(f = factor(n)); n > 1 && vecmin(f[, 2]) > 1 && sigma(f, -1) > 2; } \\ A363169
lista(nmax) = {my(c = 0, p = 10, k = 1, kmax = 10^nmax); while(k <= kmax, if(is(k), c++); if(k == p, print1(c, ", "); p *= 10); k++); }
A381496
Number of powerful numbers that are not prime powers that do not exceed 10^n.
Original entry on oeis.org
0, 0, 3, 28, 133, 510, 1790, 5997, 19639, 63541, 204037, 652173, 2078320, 6609816, 20993381, 66612867, 211222374, 669428537, 2120835892, 6717184256, 21270247404, 67341572823, 213173925948, 674739560651, 2135491756895, 6758117426102, 21385762133815, 67670426242420
Offset: 0
Let S = A286708 = A001694 \ A246547 = A126706 \ A001694.
a(0) = a(1) = 0 since 36 is the smallest term in S.
a(2) = 3 since S(1..3) = {36, 72, 100}.
a(3) = 28 since S(4..28) = {108, 144, ..., 972, 1000}.
a(4) = 133 since S(29..133) = {1089, 1125, ..., 9801, 10000}, etc.
-
Table[Sum[Boole[SquareFreeQ[k]]*Floor[Sqrt[10^n/k^3]], {k, 10^(n/3)}] - Sum[PrimePi[10^(n/k)], {k, 2, n*Log2[10]}] - 1, {n, 0, 12}]
-
from math import isqrt
from sympy import primepi, integer_nthroot, mobius
def A381496(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
m, l = 10**n, 0
j, c = isqrt(m), -1-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length())),
while j>1:
k2 = integer_nthroot(m//j**2,3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(m//k2**3)
return c+squarefreepi(integer_nthroot(m,3)[0])-l # Chai Wah Wu, Feb 25 2025
Showing 1-7 of 7 results.
Comments