cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118897 Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0000 (n,k>=0).

Original entry on oeis.org

1, 2, 4, 8, 15, 1, 29, 2, 1, 56, 5, 2, 1, 108, 12, 5, 2, 1, 208, 28, 12, 5, 2, 1, 401, 62, 29, 12, 5, 2, 1, 773, 136, 65, 30, 12, 5, 2, 1, 1490, 294, 145, 68, 31, 12, 5, 2, 1, 2872, 628, 319, 154, 71, 32, 12, 5, 2, 1, 5536, 1328, 694, 344, 163, 74, 33, 12, 5, 2, 1, 10671, 2787
Offset: 0

Views

Author

Emeric Deutsch, May 04 2006

Keywords

Comments

Row n has n-2 terms (n>=3). Sum of entries in row n is 2^n (A000079). T(n,0) = A000078(n+4) (tetranacci numbers). T(n,1) = A118898(n). Sum(k*T(n,k),n>=0) = (n-3)*2^(n-4) (A001787).

Examples

			T(7,2) = 5 because we have 0000010, 0000011, 0100000, 1100000 and 1000001.
Triangle starts:
    1;
    2;
    4;
    8;
   15,  1;
   29,  2, 1;
   56,  5, 2, 1;
  108, 12, 5, 2, 1;
  ...
		

Crossrefs

Programs

  • Maple
    G:=(1+(1-t)*(z+z^2+z^3))/(1-(1+t)*z-(1-t)*(z^2+z^3+z^4)): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(Gser,z^n)) od: 1;2;4;8; for n from 4 to 14 do seq(coeff(P[n],t,j),j=0..n-3) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, 1,
          expand(b(n-1, min(3, t+1))*`if`(t>2, x, 1))+b(n-1, 0))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 17 2019
  • Mathematica
    nn=15;a=x^3/(1-y x)+x+x^2;b=1/(1-x);f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[b (1+a)/(1-a x/(1-x)) ,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 18 2012 *)

Formula

G.f.: G(t,z) = [1+(1-t)(z+z^2+z^3)]/[1-(1+t)z-(1-t)(z^2+z^3+z^4)].