cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A118898 Number of binary sequences of length n containing exactly one subsequence 0000.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 12, 28, 62, 136, 294, 628, 1328, 2787, 5810, 12043, 24840, 51016, 104380, 212848, 432732, 877400, 1774672, 3581605, 7213746, 14502449, 29106100, 58323844, 116702074, 233199000, 465405058, 927744428, 1847359520, 3674769991
Offset: 0

Views

Author

Emeric Deutsch, May 04 2006

Keywords

Comments

Column 1 of A118897.

Examples

			a(6)=5 because we have 000010,000011,010000,100001 and 110000.
G.f. = x^4 + 2*x^5 + 5*x^6 + 12*x^7 + 28*x^8 + 62*x^9 + ... - _Zerinvary Lajos_, Jun 02 2009
		

Crossrefs

Cf. A118897.

Programs

  • Maple
    g:=z^4/(1-z-z^2-z^3-z^4)^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..37);
  • Mathematica
    RecurrenceTable[{a[1]==0,a[2]==0,a[3]==0,a[4]==1,a[5]==2,a[6]==5, a[7]==12,a[8]==28,a[n]==2a[n-1]+a[n-2]-a[n-4]-4a[n-5]-3a[n-6]-2a[n-7]-a[n-8]},a,{n,9,50}] (* Bobby Milazzo, Aug 30 2009 *)
    LinearRecurrence[{2,1,0,-1,-4,-3,-2,-1},{0,0,0,0,1,2,5,12},50] (* Harvey P. Dale, Aug 01 2012 *)
  • Sage
    taylor( mul(x/(1-x-x^2-x^3-x^4)^2 for i in range(1,2)),x,0,31)# Zerinvary Lajos, Jun 02 2009

Formula

G.f.: z^4/(1-z-z^2-z^3-z^4)^2.
From Bobby Milazzo, Aug 30 2009: (Start)
a(1)=0,a(2)=0,a(3)=0,a(4)=1,a(5)=2,a(6)=5,a(7)=12,a(8)=28
a(n) = 2a(n-1)+a(n-2)-a(n-4)-4a(n-5)-3a(n-6)-2a(n-7)-a(n-8). (End)
Showing 1-1 of 1 results.