A118914 Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers.
1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 6, 1, 1
Offset: 2
Examples
The table starts: n : prime signature of n (factorization of n) 1 : {}, (empty product) 2 : {1}, (2^1) 3 : {1}, (3^1) 4 : {2}, (2^2) 5 : {1}, (5^1) 6 : {1, 1}, (2^1 * 3^1) 7 : {1}, (5^1) 8 : {3}, (2^3) 9 : {2}, (3^2) 10 : {1, 1}, (2^1 * 5^1) 11 : {1}, (11^1) 12 : {1, 2}, (2^2 * 3^1, but exponents are sorted increasingly) etc.
Links
- Reinhard Zumkeller, Rows n = 2..1000 of table, flattened
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 73.
- Eric Weisstein's World of Mathematics, Prime Signature
- OEIS Wiki, Prime signatures
- OEIS Wiki, Ordered prime signatures
Crossrefs
Programs
-
Haskell
import Data.List (sort) a118914 n k = a118914_tabf !! (n-2) !! (k-1) a118914_row n = a118914_tabf !! (n-2) a118914_tabf = map sort $ tail a124010_tabf -- Reinhard Zumkeller, Mar 23 2014
-
Mathematica
primeSignature[n_] := Sort[ FactorInteger[n] , #1[[2]] < #2[[2]]&][[All, 2]]; Flatten[ Table[ primeSignature[n], {n, 2, 65}]](* Jean-François Alcover, Nov 16 2011 *)
-
PARI
A118914_row(n)=vecsort(factor(n)[,2]~) \\ M. F. Hasler, Oct 12 2018
Extensions
Corrected and edited by Daniel Forgues, Dec 22 2010
Comments