A118931 Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.
1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
Offset: 0
Examples
Triangle T begins: 1; 1; 1; 1, 2; 1, 8; 1, 20; 1, 40, 40; 1, 70, 280; 1, 112, 1120; 1, 168, 3360, 2240; 1, 240, 8400, 22400; 1, 330, 18480, 123200; 1, 440, 36960, 492800, 246400;
Links
- G. C. Greubel, Rows n = 0..150 of the triangle, flattened
Programs
-
Magma
F:= Factorial; [n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
Maple
Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3): seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
-
Mathematica
T[n_,k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)]; Table[T[n,k], {n,0,20}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
-
PARI
T(n,k)=if(n<3*k,0,n!/(k!*(n-3*k)!*3^k))
-
Sage
f=factorial; flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
Formula
E.g.f.: A(x,y) = exp(x + y*x^3/3).
Comments