cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118932 E.g.f.: A(x) = exp( Sum_{n>=0} x^(3^n)/3^((3^n -1)/2) ).

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 10249, 75841, 388411, 3733401, 33702813, 215375889, 1984583511, 19181083041, 141963117201, 1797976123393, 22534941675379, 202605151063081, 2992764505338021, 43182110678814801, 445326641624332623
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A118931*V = V, where A118931(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0; thus a(n) = Sum_{k=0..floor(n/3)} A118931(n,k)*a(k), with a(0) = 1.

Examples

			E.g.f. A(x) = exp( x + x^3/3 + x^9/3^4 + x^27/3^13 + x^81/3^40 + ...)
= 1 + 1*x + 1*x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! + ...
		

Crossrefs

Cf. A118931.
Variants: A118930, A118935.

Programs

  • Magma
    function a(n)
         F:=Factorial;
          if n eq 0 then return 1;
        else return (&+[F(n)*a(j)/(3^j*F(j)*F(n-3*j)): j in [0..Floor(n/3)]]);
          end if; return a; end function;
    [a(n): n in [0..25]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, Sum[n!*a[k]/(3^k*k!*(n-3*k)!), {k, 0, Floor[n/3]}] ];
    Table[a[n], {n, 0, 25}] (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    {a(n) = if(n==0,1,sum(k=0,n\3,n!/(k!*(n-3*k)!*3^k)*a(k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Defined by E.G.F.: */
    {a(n) = n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^((3^k-1)/2))+x*O(x^n)),n,x)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    @CachedFunction
    def a(n):
        f=factorial;
        if n==0: return 1
        else: return sum( f(n)*a(k)/(3^k*f(k)*f(n-3*k)) for k in (0..n/3))
    [a(n) for n in (0..25)] # G. C. Greubel, Mar 07 2021
    

Formula

a(n) = Sum_{k=0..floor(n/3)} (n!/(k!*(n-3*k)!*3^k)) * a(k), with a(0)=1.

A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,    6;
  1,   30;
  1,   90;
  1,  210;
  1,  420,   1260;
  1,  756,  11340;
  1, 1260,  56700;
  1, 1980, 207900;
  1, 2970, 623700, 1247400; ...
		

Crossrefs

Cf. A118934 (row sums), A118935 (invariant vector).
Variants: A100861, A118931.

Programs

  • Magma
    F:= Factorial;
    [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
    Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^4/4).

A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

Row sums form A118395.
Eigenvector is A118396.

Examples

			Triangle begins:
  1;
  1;
  1;
  1,    6;
  1,   24;
  1,   60;
  1,  120,    360;
  1,  210,   2520;
  1,  336,  10080;
  1,  504,  30240,    60480;
  1,  720,  75600,   604800;
  1,  990, 166320,  3326400;
  1, 1320, 332640, 13305600, 19958400;
  ...
		

Crossrefs

Cf. A118395 (row sums), A118396 (eigenvector).
Variants: A059344, A118931.

Programs

  • Magma
    F:= Factorial;
    [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_] := n!/(k!(n-3k)!);
    Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
  • PARI
    T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
    
  • Sage
    f=factorial;
    flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3).

A344912 Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0

Views

Author

Peter Luschny, Jun 04 2021

Keywords

Comments

Consider a sequence of Pascal tetrahedrons (depending on a parameter m >= 1), where the slices of the pyramid are scaled. They are given by the e.g.f.s exp(t^m / m) * exp(t*(x + y)), which provide a sequence of bivariate polynomials in x and y, whose monomials are to be ordered in degree-lexicographic order. For m = 1 one gets A109649 (resp. A046816), for m = 2 one gets A344911 (resp. A344678), and for m = 3 the current triangle. The row sums have an unexpected interpretation in A336614 (see the link).

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  3,  1,  2;
[4] 1, 4,  6,  4,  1,  8,  8;
[5] 1, 5, 10, 10,  5,  1, 20, 40,  20;
[6] 1, 6, 15, 20, 15,  6,  1, 40, 120, 120,  40,  40;
[7] 1, 7, 21, 35, 35, 21,  7,  1,  70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
		

Crossrefs

m=1: A109649, (A046816) [row sums A000244], scaling A007318 [row sums A000079].
m=2: A344911, (A344678) [row sums A005425], scaling A100861 [row sums A000085].
m=3: this triangle [row sums A336614], scaling A118931 [row sums A001470].

Programs

  • Maple
    B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
    T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
  • Mathematica
    gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
    P[n_] := Expand[n! Coefficient[ser, t, n]];
    DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
    Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
Showing 1-4 of 4 results.