A118932
E.g.f.: A(x) = exp( Sum_{n>=0} x^(3^n)/3^((3^n -1)/2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 21, 81, 351, 1233, 10249, 75841, 388411, 3733401, 33702813, 215375889, 1984583511, 19181083041, 141963117201, 1797976123393, 22534941675379, 202605151063081, 2992764505338021, 43182110678814801, 445326641624332623
Offset: 0
E.g.f. A(x) = exp( x + x^3/3 + x^9/3^4 + x^27/3^13 + x^81/3^40 + ...)
= 1 + 1*x + 1*x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! + ...
-
function a(n)
F:=Factorial;
if n eq 0 then return 1;
else return (&+[F(n)*a(j)/(3^j*F(j)*F(n-3*j)): j in [0..Floor(n/3)]]);
end if; return a; end function;
[a(n): n in [0..25]]; // G. C. Greubel, Mar 07 2021
-
a[n_]:= a[n]= If[n==0, 1, Sum[n!*a[k]/(3^k*k!*(n-3*k)!), {k, 0, Floor[n/3]}] ];
Table[a[n], {n, 0, 25}] (* G. C. Greubel, Mar 07 2021 *)
-
{a(n) = if(n==0,1,sum(k=0,n\3,n!/(k!*(n-3*k)!*3^k)*a(k)))}
for(n=0,30,print1(a(n),", "))
-
/* Defined by E.G.F.: */
{a(n) = n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^((3^k-1)/2))+x*O(x^n)),n,x)}
for(n=0,30,print1(a(n),", "))
-
@CachedFunction
def a(n):
f=factorial;
if n==0: return 1
else: return sum( f(n)*a(k)/(3^k*f(k)*f(n-3*k)) for k in (0..n/3))
[a(n) for n in (0..25)] # G. C. Greubel, Mar 07 2021
A118933
Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0
Triangle begins:
1;
1;
1;
1;
1, 6;
1, 30;
1, 90;
1, 210;
1, 420, 1260;
1, 756, 11340;
1, 1260, 56700;
1, 1980, 207900;
1, 2970, 623700, 1247400; ...
-
F:= Factorial;
[n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
-
T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
-
f=factorial;
flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A118394
Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0
Triangle begins:
1;
1;
1;
1, 6;
1, 24;
1, 60;
1, 120, 360;
1, 210, 2520;
1, 336, 10080;
1, 504, 30240, 60480;
1, 720, 75600, 604800;
1, 990, 166320, 3326400;
1, 1320, 332640, 13305600, 19958400;
...
-
F:= Factorial;
[F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
T[n_, k_] := n!/(k!(n-3k)!);
Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
-
T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
-
f=factorial;
flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A344912
Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 3, 1, 2;
[4] 1, 4, 6, 4, 1, 8, 8;
[5] 1, 5, 10, 10, 5, 1, 20, 40, 20;
[6] 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40;
[7] 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
-
B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
-
gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
P[n_] := Expand[n! Coefficient[ser, t, n]];
DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
Showing 1-4 of 4 results.
Comments