cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118931 Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums yield A001470. Given column vector V = A118932, then V is invariant under matrix product T*V = V, or, A118932(n) = Sum_{k=0..n} T(n,k)*A118932(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(3n,n) = (3*n)!/(n!*3^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle T begins:
  1;
  1;
  1;
  1,   2;
  1,   8;
  1,  20;
  1,  40,    40;
  1,  70,   280;
  1, 112,  1120;
  1, 168,  3360,   2240;
  1, 240,  8400,  22400;
  1, 330, 18480, 123200;
  1, 440, 36960, 492800, 246400;
		

Crossrefs

Cf. A001470 (row sums), A118932 (invariant vector).
Variants: A100861, A118933.

Programs

  • Magma
    F:= Factorial;
    [n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Maple
    Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3):
    seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
  • Mathematica
    T[n_,k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)];
    Table[T[n,k], {n,0,20}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<3*k,0,n!/(k!*(n-3*k)!*3^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3/3).

A118934 E.g.f.: exp(x + x^4/4).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 5691897121, 65641390081, 544238393041, 3362783785777, 36455473647271, 485442581801311, 4828464958268491, 35900587138847971, 423276450114749617, 6318491163509870401
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals row sums of triangle A118933.
These are the telephone numbers T^(4)n of [Artioli et al., p. 7]. - _Eric M. Schmidt, Oct 12 2017

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), this sequence (m=4), A052501 (m=5), A293588 (m=6), A053497 (m=7).
Cf. A118933.

Programs

  • Magma
    F:=Factorial; [(&+[F(n)/(4^j*F(j)*F(n-4*j)): j in [0..Floor(n/4)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^4/4],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Jan 26 2013 *)
    Table[Sum[n!/(4^k*k!*(n-4*k)!), {k,0,n/4}], {n,0,30}]
  • PARI
    a(n)=if(n<0,0,if(n==0,1,a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4)))
    
  • Sage
    f=factorial; [sum(f(n)/(4^j*f(j)*f(n-4*j)) for j in (0..n/4)) for n in (0..30)] # G. C. Greubel, Mar 07 2021
    

Formula

a(n) = a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4) for n>=4, with a(0)=a(1)=a(2)=a(3)=1.
a(n) ~ 1/2 * n^(3*n/4) * exp(n^(1/4)-3*n/4). - Vaclav Kotesovec, Feb 25 2014
a(n) = Sum_{k=0..floor(n/4)} n!/(4^k*k!*(n-4*k)!). - G. C. Greubel, Mar 07 2021

A118935 E.g.f.: A(x) = exp( Sum_{n>=0} x^(4^n)/4^((4^n-1)/3) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 26124309121, 412992394081, 3670397429041, 23161791013777, 729420726627271, 13374596287229311, 143560108604864491
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A118933*V = V, where A118933(n,k) = n!/[k!(n-4k)!*4^k] for n>=4*k>=0; thus a(n) = Sum_{k=0..[n/4]} A118933(n,k)*a(k), with a(0)=1.

Examples

			E.g.f. A(x) = exp( x + x^4/4 + x^16/4^5 + x^64/3^21 + x^256/3^85 +..)
= 1 + 1*x + 1*x^2/2! + 1*x^3/3! + 7*x^4/4! + 31*x^5/5!+ 91*x^6/6!+...
		

Crossrefs

Cf. A118933; variants: A118930, A118932.

Programs

  • PARI
    a(n)=if(n==0,1,sum(k=0,n\4,n!/(k!*(n-4*k)!*4^k)*a(k)))
    
  • PARI
    /* Defined by E.G.F.: */ a(n)=n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(4)),x^(4^k)/4^((4^k-1)/3))+x*O(x^n)),n,x)

Formula

a(n) = Sum_{k=0..[n/4]} n!/[k!*(n-4*k)!*4^k] * a(k), with a(0)=1.
Showing 1-3 of 3 results.