cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053497 Number of degree-n permutations of order dividing 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 721, 5761, 25921, 86401, 237601, 570241, 1235521, 892045441, 13348249201, 106757164801, 604924594561, 2722120577281, 10344007402561, 34479959558401, 24928970490633601, 546446134633639681, 6281586217487489041, 50248618811434961281
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), A293588 (m=6), this sequence (m=7).
Column k=7 of A008307.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 31); Coefficients(R!(Laplace( Exp(x + x^7/7) ))); // G. C. Greubel, May 14 2019, Mar 07 2021
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 7])))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
  • Mathematica
    CoefficientList[Series[Exp[x+x^7/7], {x, 0, 24}], x]*Range[0, 24]! (* Jean-François Alcover, Mar 24 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^7/7) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    f=factorial; [sum(f(n)/(7^j*f(j)*f(n-7*j)) for j in (0..n/7)) for n in (0..30)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^7/7).
a(n) = Sum_{k=0..floor(n/7)} n!/(7^k*k!*(n-7*k)!). - G. C. Greubel, Mar 07 2021

A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,    6;
  1,   30;
  1,   90;
  1,  210;
  1,  420,   1260;
  1,  756,  11340;
  1, 1260,  56700;
  1, 1980, 207900;
  1, 2970, 623700, 1247400; ...
		

Crossrefs

Cf. A118934 (row sums), A118935 (invariant vector).
Variants: A100861, A118931.

Programs

  • Magma
    F:= Factorial;
    [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
    Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^4/4).

A293588 E.g.f.: exp(x + x^6/6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 6763681, 86692321, 605765161, 3027624601, 12109056961, 41169011521, 5063607974881, 94197184734241, 939457659787201, 6572292677455681, 36141156689382361, 166238526616664041, 20612479896229156321
Offset: 0

Views

Author

Eric M. Schmidt, Oct 12 2017

Keywords

Comments

These are the telephone numbers T^(6)_n of [Artioli et al., p. 7].

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), A118934 (m=4), A052501 (m=5), this sequence (m=6), A053497 (m=7).

Programs

  • Magma
    F:= Factorial;
    [(&+[ F(n)/(6^k*F(k)*F(n-6*k)): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^6/6],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 11 2017 *)
    Table[Sum[n!/(6^k*k!*(n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + x^6/6))) \\ Michel Marcus, Oct 13 2017
    
  • Sage
    f=factorial;
    [sum( f(n)/(6^k*f(k)*f(n-6*k)) for k in [0..n/3]) for n in [0..30]] # G. C. Greubel, Mar 07 2021
    

Formula

a(n) = a(n-1) + (n-1)!/(n-6)! * a(n-6).
a(n) = Sum_{j=0..floor(n/6)} n!/(6^j*j!*(n-6*j)!). - G. C. Greubel, Mar 07 2021
Showing 1-3 of 3 results.