cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118930 E.g.f.: A(x) = exp( Sum_{n>=0} x^(2^n)/2^(2^n-1) ).

Original entry on oeis.org

1, 1, 2, 4, 13, 41, 166, 652, 3494, 18118, 114076, 681176, 5016892, 35377564, 288204008, 2232198256, 21124254181, 191779964597, 2011347229114, 19840403629108, 231266808172181, 2553719667653281, 31743603728993542
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A100861*V = V, where Bessel numbers A100861(n,k) = n!/[k!(n-2k)!*2^k] give the number of k-matchings of the complete graph K(n).
Equals Lim_{n->inf.} A144299^n, if A144299 is considered an infinite lower triangular matrix. - Gary W. Adamson, Dec 08 2008

Examples

			E.g.f. A(x) = exp( x + x^2/2 + x^4/2^3 + x^8/2^7 + x^16/2^15 +...)
= 1 + 1*x + 2*x^2/2! + 4*x^3/3! + 13*x^4/4! + 41*x^5/5!+ 166*x^6/6!+...
Using coefficients A100861(n,k) = n!/[k!(n-2k)!*2^k]:
a(5) = 1*a(0) +10*a(1) +15*a(2) = 1*1 +10*1 +15*2 = 41.
a(6) = 1*a(0) +15*a(1) +45*a(2) +15*a(3) = 1*1 +15*1 +45*2 +15*4 = 166.
		

Crossrefs

Cf. A100861; variants: A118932, A118935.
Equals row sums of triangle A152685. - Gary W. Adamson, Dec 10 2008
Cf. A144299. - Gary W. Adamson, Dec 08 2008

Programs

  • Maple
    A118930 := proc(n)
        option remember;
        if n<= 1 then
            1 ;
        else
            n!*add(procname(k)/k!/(n-2*k)!/2^k,k=0..n/2) ;
        end if;
    end proc;
    seq(A118930(n),n=0..10) ; # R. J. Mathar, Aug 19 2014
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, 2k] (2k-1)!! a[k], {k, 0, n/2}]];
    a /@ Range[0, 22] (* Jean-François Alcover, Mar 26 2020 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,n!/(k!*(n-2*k)!*2^k)*a(k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Defined by E.G.F.: */
    {a(n)=n!*polcoeff( exp(sum(k=0,#binary(n),x^(2^k)/2^(2^k-1))+x*O(x^n)),n,x)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..[n/2]} n!/[k!*(n-2*k)!*2^k] * a(k), with a(0)=1. a(n) = Sum_{k=0..[n/2]} A100861(n,k)*a(k), with a(0)=1.

A118932 E.g.f.: A(x) = exp( Sum_{n>=0} x^(3^n)/3^((3^n -1)/2) ).

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 10249, 75841, 388411, 3733401, 33702813, 215375889, 1984583511, 19181083041, 141963117201, 1797976123393, 22534941675379, 202605151063081, 2992764505338021, 43182110678814801, 445326641624332623
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A118931*V = V, where A118931(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0; thus a(n) = Sum_{k=0..floor(n/3)} A118931(n,k)*a(k), with a(0) = 1.

Examples

			E.g.f. A(x) = exp( x + x^3/3 + x^9/3^4 + x^27/3^13 + x^81/3^40 + ...)
= 1 + 1*x + 1*x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! + ...
		

Crossrefs

Cf. A118931.
Variants: A118930, A118935.

Programs

  • Magma
    function a(n)
         F:=Factorial;
          if n eq 0 then return 1;
        else return (&+[F(n)*a(j)/(3^j*F(j)*F(n-3*j)): j in [0..Floor(n/3)]]);
          end if; return a; end function;
    [a(n): n in [0..25]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, Sum[n!*a[k]/(3^k*k!*(n-3*k)!), {k, 0, Floor[n/3]}] ];
    Table[a[n], {n, 0, 25}] (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    {a(n) = if(n==0,1,sum(k=0,n\3,n!/(k!*(n-3*k)!*3^k)*a(k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Defined by E.G.F.: */
    {a(n) = n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^((3^k-1)/2))+x*O(x^n)),n,x)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    @CachedFunction
    def a(n):
        f=factorial;
        if n==0: return 1
        else: return sum( f(n)*a(k)/(3^k*f(k)*f(n-3*k)) for k in (0..n/3))
    [a(n) for n in (0..25)] # G. C. Greubel, Mar 07 2021
    

Formula

a(n) = Sum_{k=0..floor(n/3)} (n!/(k!*(n-3*k)!*3^k)) * a(k), with a(0)=1.

A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,    6;
  1,   30;
  1,   90;
  1,  210;
  1,  420,   1260;
  1,  756,  11340;
  1, 1260,  56700;
  1, 1980, 207900;
  1, 2970, 623700, 1247400; ...
		

Crossrefs

Cf. A118934 (row sums), A118935 (invariant vector).
Variants: A100861, A118931.

Programs

  • Magma
    F:= Factorial;
    [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
    Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^4/4).
Showing 1-3 of 3 results.