A118930
E.g.f.: A(x) = exp( Sum_{n>=0} x^(2^n)/2^(2^n-1) ).
Original entry on oeis.org
1, 1, 2, 4, 13, 41, 166, 652, 3494, 18118, 114076, 681176, 5016892, 35377564, 288204008, 2232198256, 21124254181, 191779964597, 2011347229114, 19840403629108, 231266808172181, 2553719667653281, 31743603728993542
Offset: 0
E.g.f. A(x) = exp( x + x^2/2 + x^4/2^3 + x^8/2^7 + x^16/2^15 +...)
= 1 + 1*x + 2*x^2/2! + 4*x^3/3! + 13*x^4/4! + 41*x^5/5!+ 166*x^6/6!+...
Using coefficients A100861(n,k) = n!/[k!(n-2k)!*2^k]:
a(5) = 1*a(0) +10*a(1) +15*a(2) = 1*1 +10*1 +15*2 = 41.
a(6) = 1*a(0) +15*a(1) +45*a(2) +15*a(3) = 1*1 +15*1 +45*2 +15*4 = 166.
-
A118930 := proc(n)
option remember;
if n<= 1 then
1 ;
else
n!*add(procname(k)/k!/(n-2*k)!/2^k,k=0..n/2) ;
end if;
end proc;
seq(A118930(n),n=0..10) ; # R. J. Mathar, Aug 19 2014
-
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, 2k] (2k-1)!! a[k], {k, 0, n/2}]];
a /@ Range[0, 22] (* Jean-François Alcover, Mar 26 2020 *)
-
{a(n)=if(n==0,1,sum(k=0,n\2,n!/(k!*(n-2*k)!*2^k)*a(k)))}
for(n=0,30,print1(a(n),", "))
-
/* Defined by E.G.F.: */
{a(n)=n!*polcoeff( exp(sum(k=0,#binary(n),x^(2^k)/2^(2^k-1))+x*O(x^n)),n,x)}
for(n=0,30,print1(a(n),", "))
A118931
Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
Offset: 0
Triangle T begins:
1;
1;
1;
1, 2;
1, 8;
1, 20;
1, 40, 40;
1, 70, 280;
1, 112, 1120;
1, 168, 3360, 2240;
1, 240, 8400, 22400;
1, 330, 18480, 123200;
1, 440, 36960, 492800, 246400;
-
F:= Factorial;
[n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3):
seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
-
T[n_,k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)];
Table[T[n,k], {n,0,20}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
-
T(n,k)=if(n<3*k,0,n!/(k!*(n-3*k)!*3^k))
-
f=factorial;
flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A118396
Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
-
{a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}
A118935
E.g.f.: A(x) = exp( Sum_{n>=0} x^(4^n)/4^((4^n-1)/3) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 26124309121, 412992394081, 3670397429041, 23161791013777, 729420726627271, 13374596287229311, 143560108604864491
Offset: 0
E.g.f. A(x) = exp( x + x^4/4 + x^16/4^5 + x^64/3^21 + x^256/3^85 +..)
= 1 + 1*x + 1*x^2/2! + 1*x^3/3! + 7*x^4/4! + 31*x^5/5!+ 91*x^6/6!+...
-
a(n)=if(n==0,1,sum(k=0,n\4,n!/(k!*(n-4*k)!*4^k)*a(k)))
-
/* Defined by E.G.F.: */ a(n)=n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(4)),x^(4^k)/4^((4^k-1)/3))+x*O(x^n)),n,x)
Showing 1-4 of 4 results.
Comments