cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118930 E.g.f.: A(x) = exp( Sum_{n>=0} x^(2^n)/2^(2^n-1) ).

Original entry on oeis.org

1, 1, 2, 4, 13, 41, 166, 652, 3494, 18118, 114076, 681176, 5016892, 35377564, 288204008, 2232198256, 21124254181, 191779964597, 2011347229114, 19840403629108, 231266808172181, 2553719667653281, 31743603728993542
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A100861*V = V, where Bessel numbers A100861(n,k) = n!/[k!(n-2k)!*2^k] give the number of k-matchings of the complete graph K(n).
Equals Lim_{n->inf.} A144299^n, if A144299 is considered an infinite lower triangular matrix. - Gary W. Adamson, Dec 08 2008

Examples

			E.g.f. A(x) = exp( x + x^2/2 + x^4/2^3 + x^8/2^7 + x^16/2^15 +...)
= 1 + 1*x + 2*x^2/2! + 4*x^3/3! + 13*x^4/4! + 41*x^5/5!+ 166*x^6/6!+...
Using coefficients A100861(n,k) = n!/[k!(n-2k)!*2^k]:
a(5) = 1*a(0) +10*a(1) +15*a(2) = 1*1 +10*1 +15*2 = 41.
a(6) = 1*a(0) +15*a(1) +45*a(2) +15*a(3) = 1*1 +15*1 +45*2 +15*4 = 166.
		

Crossrefs

Cf. A100861; variants: A118932, A118935.
Equals row sums of triangle A152685. - Gary W. Adamson, Dec 10 2008
Cf. A144299. - Gary W. Adamson, Dec 08 2008

Programs

  • Maple
    A118930 := proc(n)
        option remember;
        if n<= 1 then
            1 ;
        else
            n!*add(procname(k)/k!/(n-2*k)!/2^k,k=0..n/2) ;
        end if;
    end proc;
    seq(A118930(n),n=0..10) ; # R. J. Mathar, Aug 19 2014
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, 2k] (2k-1)!! a[k], {k, 0, n/2}]];
    a /@ Range[0, 22] (* Jean-François Alcover, Mar 26 2020 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,n!/(k!*(n-2*k)!*2^k)*a(k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Defined by E.G.F.: */
    {a(n)=n!*polcoeff( exp(sum(k=0,#binary(n),x^(2^k)/2^(2^k-1))+x*O(x^n)),n,x)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..[n/2]} n!/[k!*(n-2*k)!*2^k] * a(k), with a(0)=1. a(n) = Sum_{k=0..[n/2]} A100861(n,k)*a(k), with a(0)=1.

A118931 Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums yield A001470. Given column vector V = A118932, then V is invariant under matrix product T*V = V, or, A118932(n) = Sum_{k=0..n} T(n,k)*A118932(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(3n,n) = (3*n)!/(n!*3^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle T begins:
  1;
  1;
  1;
  1,   2;
  1,   8;
  1,  20;
  1,  40,    40;
  1,  70,   280;
  1, 112,  1120;
  1, 168,  3360,   2240;
  1, 240,  8400,  22400;
  1, 330, 18480, 123200;
  1, 440, 36960, 492800, 246400;
		

Crossrefs

Cf. A001470 (row sums), A118932 (invariant vector).
Variants: A100861, A118933.

Programs

  • Magma
    F:= Factorial;
    [n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Maple
    Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3):
    seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
  • Mathematica
    T[n_,k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)];
    Table[T[n,k], {n,0,20}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<3*k,0,n!/(k!*(n-3*k)!*3^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3/3).

A118396 Eigenvector of triangle A118394; E.g.f.: exp( Sum_{n>=0} x^(3^n) ).

Original entry on oeis.org

1, 1, 1, 7, 25, 61, 481, 2731, 10417, 454105, 4309921, 23452111, 592433161, 6789801877, 46254009985, 893881991731, 11548704851041, 93501748795441, 4828847934591937, 83867376656907415, 823025819684123641, 33409213329178701421, 640457721676922946721
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of triangle A118394 is: exp(x+y*x^3), where A118394(n,k) = n!/k!/(n-3*k)!. More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A118394, A118395; variants: A118393, A118932.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(3^i), i=0..ilog[3](n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Function[j, j! a[n-j] Binomial[n-1, j-1]][3^i], {i, 0, Log[3, n]}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k))+x*O(x^n)),n)}

Formula

a(n) = Sum_{k=0..[n/3]} n!/k!/(n-3*k)! *a(k) for n>=0, with a(0)=1.

A118935 E.g.f.: A(x) = exp( Sum_{n>=0} x^(4^n)/4^((4^n-1)/3) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 26124309121, 412992394081, 3670397429041, 23161791013777, 729420726627271, 13374596287229311, 143560108604864491
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A118933*V = V, where A118933(n,k) = n!/[k!(n-4k)!*4^k] for n>=4*k>=0; thus a(n) = Sum_{k=0..[n/4]} A118933(n,k)*a(k), with a(0)=1.

Examples

			E.g.f. A(x) = exp( x + x^4/4 + x^16/4^5 + x^64/3^21 + x^256/3^85 +..)
= 1 + 1*x + 1*x^2/2! + 1*x^3/3! + 7*x^4/4! + 31*x^5/5!+ 91*x^6/6!+...
		

Crossrefs

Cf. A118933; variants: A118930, A118932.

Programs

  • PARI
    a(n)=if(n==0,1,sum(k=0,n\4,n!/(k!*(n-4*k)!*4^k)*a(k)))
    
  • PARI
    /* Defined by E.G.F.: */ a(n)=n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(4)),x^(4^k)/4^((4^k-1)/3))+x*O(x^n)),n,x)

Formula

a(n) = Sum_{k=0..[n/4]} n!/[k!*(n-4*k)!*4^k] * a(k), with a(0)=1.
Showing 1-4 of 4 results.