A118954 Numbers that cannot be written as 2^k + prime.
1, 2, 16, 22, 26, 28, 36, 40, 46, 50, 52, 56, 58, 64, 70, 76, 78, 82, 86, 88, 92, 94, 96, 100, 106, 112, 116, 118, 120, 122, 124, 126, 127, 134, 136, 142, 144, 146, 148, 149, 154, 156, 160, 162, 166, 170, 172, 176, 178, 184, 186, 188, 190, 196, 202, 204, 206, 208
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Roger Crocker, A theorem concerning prime numbers, Mathematics Magazine 34:6 (1961), pp. 316+344.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), 113-123.
- N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 57 (1934), pp. 668-678.
- J. G. van der Corput, On de Polignac’s conjecture, Simon Stevin 27 (1950), pp. 99-105. Cited in MR 35298.
Crossrefs
Programs
-
Haskell
a118954 n = a118954_list !! (n-1) a118954_list = filter f [1..] where f x = all (== 0) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list -- Reinhard Zumkeller, Jan 03 2014
-
Magma
lst:=[]; for n in [1..208] do k:=-1; repeat k+:=1; a:=n-2^k; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, n); end if; end for; lst; // Arkadiusz Wesolowski, Sep 02 2016
-
PARI
is(n)=my(k=1);while(k
Charles R Greathouse IV, Sep 01 2015
Formula
n < a(n) < kn for some k < 2 and all large enough n, see Romanoff and either Erdős or van der Corput. - Charles R Greathouse IV, Sep 01 2015
Comments