cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006285 Odd numbers not of form p + 2^k (de Polignac numbers).

Original entry on oeis.org

1, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 905, 907, 959, 977, 997, 1019, 1087, 1199, 1207, 1211, 1243, 1259, 1271, 1477, 1529, 1541, 1549, 1589, 1597, 1619, 1649, 1657, 1719, 1759, 1777, 1783, 1807, 1829, 1859, 1867, 1927, 1969, 1973, 1985, 2171, 2203, 2213, 2231, 2263, 2279, 2293, 2377, 2429, 2465, 2503, 2579, 2669
Offset: 1

Views

Author

Keywords

Comments

Contains both primes (A065381) and composites (A098237). - Jonathan Vos Post, Jun 19 2008
Crocker shows that this sequence is infinite; in particular, 2^2^n - 5 is in this sequence for each n > 2. - Charles R Greathouse IV, Sep 01 2015
Problem: what is the asymptotic density of de Polignac numbers? Based on the data in A254248, it seems this sequence may have an asymptotic density d > 0.05. Conjecture (cf. Pomerance 2013): the density d(n) of de Polignac numbers <= n is d(n) ~ (1 - 2/log(n))^(log(n)/log(2)), so the asymptotic density d = exp(-2/log(2)) = 0.055833... = 0.111666.../2. - Thomas Ordowski, Jan 30 2021
From Amiram Eldar, Feb 03 2021: (Start)
Romanov (or Romanoff) proved in 1934 that the complementary sequence has a positive lower asymptotic density, and the assumed asymptotic density was later named Romanov's constant (Pintz, 2006).
The lower asymptotic density of this sequence is positive (Van Der Corput, 1950; Erdős, 1950), and larger than 0.00905 (Habsieger and Roblot, 2006).
The upper asymptotic density of this sequence is smaller than 0.392352 (Elsholtz and Schlage-Puchta, 2018).
Previous bounds on the upper asymptotic density were given by Chen and Sun (2006), Pintz (2006), Habsieger and Roblot (2006), Lü (2007) and Habsieger and Sivak-Fischler (2010).
Romani (1983) conjectured that the asymptotic density of this sequence is 0.066... (End)
Chen, Dai, & Li show that the lower asymptotic density of this sequence is larger than 0.00965, improving on Habsieger & Roblot. - Charles R Greathouse IV, Jul 08 2024

Examples

			127 is in the sequence since 127 - 2^0 = 126, 127 - 2^1 = 125, 127 - 2^2 = 123, 127 - 2^3 = 119, 127 - 2^4 = 111, 127 - 2^5 = 95, and 127 - 2^6 = 63 are all composite. - _Michael B. Porter_, Aug 29 2016
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 226.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F13.
  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., NJ, 2005, pp. 62 & 300.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. G. Van Der Corput, On de Polignac's conjecture, Simon Stevin, Vol. 27 (1950), pp. 99-105.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, see #127.

Crossrefs

Programs

  • Haskell
    a006285 n = a006285_list !! (n-1)
    a006285_list = filter ((== 0) . a109925) [1, 3 ..]
    -- Reinhard Zumkeller, May 27 2015
    
  • Magma
    lst:=[]; for n in [1..1973 by 2] do x:=-1; repeat x+:=1; a:=n-2^x; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, n); end if; end for; lst; // Arkadiusz Wesolowski, Aug 29 2016
    
  • Maple
    N:= 10000: # to get all terms <= N
    P:= select(isprime, {2,seq(i,i=3..N,2)}):
    T:= {seq(2^i,i=0..ilog2(N))}:
    R:= {seq(i,i=1..N,2)} minus {seq(seq(p+t,p=P),t=T)}:
    sort(convert(R,list)); # Robert Israel, Sep 23 2016
  • Mathematica
    Do[ i = 0; l = Ceiling[ N[ Log[ 2, n ] ] ]; While[ ! PrimeQ[ n - 2^i ] && i < l, i++ ]; If[ i == l, Print[ n ] ], {n, 1, 2000, 2} ]
    Join[{1},Select[Range[5,1999,2],!MemberQ[PrimeQ[#-2^Range[Floor[ Log[ 2,#]]]], True]&]] (* Harvey P. Dale, Jul 22 2011 *)
  • PARI
    isA006285(n,i=1)={ bittest(n,0) && until( isprime(n-i) || nn } \\ M. F. Hasler, Jun 19 2008, updated Apr 12 2017
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A006285_gen(startvalue=1): # generator of terms
        return filter(lambda n: not any(isprime(n-(1<A006285_list = list(islice(A006285_gen(),30)) # Chai Wah Wu, Nov 29 2023

Formula

A109925(a(n)) = 0. - Reinhard Zumkeller, May 27 2015
Conjecture: a(n) ~ n*exp(2/log(2)) = n*17.91... - Thomas Ordowski, Feb 02 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2000

A118955 Numbers of the form 2^k + prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2006

Keywords

Comments

A109925(a(n)) > 0, complement of A118954;
The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434. - Charles R Greathouse IV, Mar 12 2008
Elsholtz & Schlage-Puchta improve the bound on lower density to 0.107648. Unpublished work by Jie Wu improves this to 0.110114, see Remark 1 in Elsholtz & Schlage-Puchta. - Charles R Greathouse IV, Aug 06 2021

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 87.

Crossrefs

Subsequence of A081311; A118957 is a subsequence.

Programs

  • Haskell
    a118955 n = a118955_list !! (n-1)
    a118955_list = filter f [1..] where
       f x = any (== 1) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Mathematica
    Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#-k], r=True]]; r)& ] (* Jean-François Alcover, Dec 26 2013, after Charles R Greathouse IV *)
  • PARI
    is(n)=my(k=1);while(n>k,if(isprime(n-k),return(1),k*=2));0 \\ Charles R Greathouse IV, Mar 12 2008
    
  • PARI
    list(lim)=my(v=List(),t=1); while(tCharles R Greathouse IV, Aug 06 2021
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A118955_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: any(isprime(n-(1<A118955_list = list(islice(A118955_gen(),30)) # Chai Wah Wu, Nov 29 2023

A109925 Number of primes of the form n - 2^k.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 1, 2, 3, 1, 4, 0, 2, 1, 2, 0, 3, 0, 1, 1, 2, 1, 3, 1, 3, 0, 2, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 3, 0, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 3, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 2, 1, 6, 0, 3, 0, 2, 1, 3, 0, 3, 1, 2, 0, 4, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 1, 3, 0, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Amarnath Murthy, Jul 17 2005

Keywords

Comments

Erdős conjectures that the numbers in A039669 are the only n for which n-2^r is prime for all 2^rT. D. Noe and Robert G. Wilson v, Jul 19 2005
a(A006285(n)) = 0. - Reinhard Zumkeller, May 27 2015

Examples

			a(21) = 4, 21-2 =19, 21-4 = 17, 21-8 = 13, 21-16 = 5, four primes.
127 is the smallest odd number > 1 such that a(n) = 0: A006285(2) = 127. - _Reinhard Zumkeller_, May 27 2015
		

Crossrefs

Programs

  • Haskell
    a109925 n = sum $ map (a010051' . (n -)) $ takeWhile (< n)  a000079_list
    -- Reinhard Zumkeller, May 27 2015
    
  • Magma
    a109925:=function(n); count:=0; e:=1; while e le n do if IsPrime(n-e) then count+:=1; end if; e*:=2; end while; return count; end function; [ a109925(n): n in [1..105] ]; // Klaus Brockhaus, Oct 30 2010
    
  • Maple
    A109925 := proc(n)
        a := 0 ;
        for k from 0 do
            if n-2^k < 2 then
                return a ;
            elif isprime(n-2^k) then
                a := a+1 ;
            end if;
        end do:
    end proc:
    seq(A109925(n),n=1..80) ; # R. J. Mathar, Mar 07 2022
  • Mathematica
    Table[cnt=0; r=1; While[rRobert G. Wilson v, Jul 21 2005 *)
    Table[Count[n - 2^Range[0, Floor[Log2[n]]], ?PrimeQ], {n, 110}] (* _Harvey P. Dale, Oct 21 2024 *)
  • PARI
    a(n)=sum(k=0,log(n)\log(2),isprime(n-2^k)) \\ Charles R Greathouse IV, Feb 19 2013
    
  • Python
    from sympy import isprime
    def A109925(n): return sum(1 for i in range(n.bit_length()) if isprime(n-(1<Chai Wah Wu, Nov 29 2023

Formula

a(A118954(n))=0, a(A118955(n))>0; A118952(n)<=a(n); A078687(n)=a(A000040(n)). - Reinhard Zumkeller, May 07 2006
G.f.: ( Sum_{i>=0} x^(2^i) ) * ( Sum_{j>=1} x^prime(j) ). - Ilya Gutkovskiy, Feb 10 2022

Extensions

Corrected and extended by T. D. Noe and Robert G. Wilson v, Jul 19 2005

A118956 Numbers that cannot be written as 2^k + p with p prime < 2^k.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 14, 16, 17, 20, 22, 24, 25, 26, 28, 30, 31, 32, 33, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 57, 58, 59, 60, 62, 64, 65, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 86, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 100, 102, 103, 104, 106
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2006

Keywords

Comments

Complement of A118957.
A118954 is a subsequence.

Crossrefs

Programs

  • Mathematica
    nn=15;Complement[Range[nn^2],Flatten[Table[c=2^n;c+Prime[ Range[ PrimePi[ c]]],{n,2,nn}]]] (* Harvey P. Dale, Sep 14 2012 *)
  • Python
    from sympy import primepi
    def A118956(n):
        def f(x): return int(n+sum(primepi(min(x-(m:=1<Chai Wah Wu, Feb 23 2025

Formula

A118952(a(n)) = 0.

A253238 Number of ways to write n as a sum of a perfect power (>1) and a prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 0, 1, 1, 4, 2, 2, 2, 1, 3, 2, 2, 3, 1, 2, 4, 4, 2, 2, 1, 2, 2, 4, 2, 3, 1, 3, 2, 4, 2, 2, 2, 3, 4, 2, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 4, 2, 2, 2, 2, 1, 5, 1, 4, 2, 3, 3, 2, 1, 5, 2, 1, 4, 4, 3, 2, 1, 2, 4, 3, 2, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 6, 2, 4, 2, 2, 4, 5, 2, 3, 1, 3, 3, 5, 2, 3, 1, 2, 4, 4, 3, 3, 2, 1, 6
Offset: 1

Views

Author

Eric Chen, May 17 2015

Keywords

Comments

In this sequence, "perfect power" does not include 0 or 1, "prime" does not include 1. Both "perfect power" and "prime" must be positive.
In the past, I conjectured that a(n) > 0 for all n>24, but this is not true. My PARI program found that a(1549) = 0.
I also asked which a(n) are 1. For example, 331 is a de Polignac number (A006285), so it cannot be written as 2^n+p with p prime, and 331-6^n must divisible by 5, 331-10^n must divisible by 3, ..., 331-18^2 = 331-324 = 7 is prime (and it is the only prime of the form 331-m^n, with m, n natural numbers, m>1, n>1), so a(331) = 1. Similarly, a(3319) = 1. Conjecture: a(n) > 1 for all n > 3319.
This conjecture is not true: a(1771561) = 0. (See A119748)
Another conjecture: For every number m>=0, there is a number k such that a(n)>=m for all n>=k.
Another conjecture: Except for k=2, first occurrence of k must be earlier then first occurrence of k+1.
For n such that a(n) = 0, see A119748.
For n such that a(n) = 1, see the following a-file of this sequence.

Crossrefs

Programs

  • Mathematica
    nn = 128; pwrs = Flatten[Table[Range[2, Floor[nn^(1/ex)]]^ex, {ex, 2, Floor[Log[2, nn]]}]]; pp = Prime[Range[PrimePi[nn]]]; t = Table[0, {nn}]; Do[ t[[i[[1]]]] = i[[2]], {i, Tally[Sort[Select[Flatten[Outer[Plus, pwrs, pp]], # <= nn &]]]}]; t
  • PARI
    a(n) = sum(k=1, n-1, ispower(k) && isprime(n-k))
    
  • PARI
    a(n)=sum(e=2,log(n)\log(2),sum(b=2,sqrtnint(n,e),isprime(n-b^e)&&!ispower(b))) \\ Charles R Greathouse IV, May 28 2015

A175957 Numbers that cannot be written as the sum of a prime number and a primorial number.

Original entry on oeis.org

1, 2, 10, 16, 22, 26, 27, 28, 34, 36, 40, 46, 50, 51, 52, 56, 57, 58, 64, 66, 70, 76, 78, 82, 86, 87, 88, 92, 93, 94, 96, 100, 106, 112, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 130, 134, 135, 136, 142, 144, 146, 147, 148, 149, 154, 156, 160, 162, 166, 170
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pp = Select[ FoldList[Times, 1, Prime@ Range@ 20], # <= n &]}, Last@ Union@ PrimeQ[n - pp] == False]; Select[ Range@ 170, fQ] (* Robert G. Wilson v, Nov 05 2010 *)

Formula

{k : A175933(k)=0}. - R. J. Mathar, Nov 03 2010

Extensions

Corrected (90 removed) and extended by R. J. Mathar and Robert G. Wilson v, Nov 03 2010
Showing 1-6 of 6 results.