A118965 Number of missing residues in Fibonacci sequence mod n.
0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 1, 4, 0, 0, 5, 4, 7, 7, 0, 12, 8, 4, 11, 0, 8, 0, 7, 19, 0, 12, 11, 14, 21, 0, 21, 8, 25, 14, 10, 22, 24, 10, 24, 0, 25, 32, 33, 12, 0, 16, 22, 16, 25, 43, 31, 24, 38, 22, 5, 36, 41, 40, 22, 20, 28, 16, 48, 40, 0, 27, 57
Offset: 1
Keywords
Examples
The Fibonacci sequence mod 8 is { 0 1 1 2 3 5 0 5 5 2 7 1 0 1 1 ... } - a periodic sequence with a period of 12 (see A001175). Two residues do not occur in this sequence (4 and 6), therefore a(8) = 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Cyrus Hsia et al., Mathematical Mayhem Editors, Fibonacci residues, Crux Mathematicorum, 1997 Vol. 23 No. 4, pp. 224-226.
- Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.
- D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly (67 #6, Jun-Jul 1960), pp. 525-532.
Programs
-
Haskell
a118965 = sum . map (0 ^) . a128924_row -- Reinhard Zumkeller, Jan 16 2014
-
Mathematica
With[{fibs=Fibonacci[Range[300]]},Table[Length[Complement[Range[0,n-1],Union[ Mod[fibs,n]]]],{n,80}]] (* Harvey P. Dale, Jul 01 2021 *)
-
PARI
a(n)=if(n<8, return(0)); my(v=List([1,2])); while(v[#v] || v[#v-1]!=1, listput(v,(v[#v]+v[#v-1])%n)); n-#Set(v) \\ Charles R Greathouse IV, Jun 20 2017
Formula
a(n) = n - A066853(n). - Michel Marcus, May 27 2013
Extensions
Offset corrected by Michel Marcus, May 27 2013
Comments