cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001558 Number of hill-free Dyck paths of semilength n+3 and having length of first descent equal to 1 (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

1, 3, 10, 33, 111, 379, 1312, 4596, 16266, 58082, 209010, 757259, 2760123, 10114131, 37239072, 137698584, 511140558, 1904038986, 7115422212, 26668376994, 100221202998, 377570383518, 1425706128480, 5394898197448, 20454676622476
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of even-length descents to ground level in all Dyck paths of semilength n+2. Example: a(1)=3 because in UDUDUD, UDUU(DD), UU(DD)UD, UUDU(DD) and UUUDDD we have 3 even-length descents to ground level (shown between parentheses). - Emeric Deutsch, Oct 05 2008
Convolution of A000108 with A104629. - Philippe Deléham, Nov 11 2009
The Kn12 triangle sums of A039599 are given by the terms of this sequence. For the definition of this and other triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011

Examples

			a(1)=3 because we have uu(d)ududd, uuu(d)uddd and uu(d)uuddd, where u=(1,1), d=(1,-1) (the first descents are shown between parentheses).
G.f. = 1 + 3*x + 10*x^2 + 33*x^3 + 111*x^4 + 379*x^5 + 1312*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A111301. - Emeric Deutsch, Oct 05 2008

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(x*(3-Sqrt(1-4*x)))*((1-Sqrt(1-4*x))/(2*x))^3 )); // G. C. Greubel, Feb 12 2019
    
  • Maple
    F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=F*C^3: gser:=series(g,z=0,32): seq(coeff(gser,z,n),n=0..27); # Emeric Deutsch, May 08 2006
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(x*(3-Sqrt[1-4*x]))*((1-Sqrt[1-4*x])/(2*x))^3, {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)))*((1-sqrt(1-4*x))/(2*x))^3) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    ((1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)))*((1-sqrt(1-4*x))/(2*x))^3).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

a(n) = A000957(n+4) - A000957(n+3) - A000957(n+2) (A000957 are the Fine numbers). - Emeric Deutsch, May 08 2006
a(n) = A118972(n+3,1). - Emeric Deutsch, May 08 2006
G.f.: F*C^3, where F = (1-sqrt(1-4z))/(z*(3-sqrt(1-4z))) and C = (1-sqrt(1-4z))/(2z) is the Catalan function. - Emeric Deutsch, May 08 2006
a(n) = Sum_{k>=0} k*A111301(n+2,k). - Emeric Deutsch, Oct 05 2008
(n+3)*a(n) = (-(11/2)*n + 21/2)*a(n-3) + ((9/2)*n + 11/2)*a(n-1) + (-(1/2)*n + 9/2)*a(n-2) + (-2n + 5)*a(n-4). - Simon Plouffe, Feb 09 2012
a(n) ~ 11*2^(2*n+4)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014

Extensions

Edited by Emeric Deutsch, May 08 2006

A118973 Number of hill-free Dyck paths of semilength n+2 and having length of first descent equal to 2 (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

1, 0, 2, 5, 16, 51, 168, 565, 1934, 6716, 23604, 83806, 300154, 1083137, 3934404, 14374413, 52787766, 194746632, 721435884, 2682522918, 10008240456, 37455101382, 140569122624, 528926230530, 1994980278636, 7541234323096
Offset: 0

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Comments

Also, for a given j>=2, number of hill-free Dyck paths of semilength n+j and having length of first descent equal to j. a(n)=A000108(n+1)-A000108(n)-[A000957(n+2)-A000957(n+1)]. Columns 2,3,4,... of A118972 (without the initial 0's).

Examples

			a(2)=2 because we have uu(dd)uudd and uuu(dd)udd, where u=(1,1),d=(1,-1) (the first descents are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=(1-z)*C*F: gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=0..28);
    A118973List := proc(m) local A, P, n; A := [1,0]; P := [1,0];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
    A := [op(A), P[-1]] od; A end: A118973List(26); # Peter Luschny, Mar 26 2022
  • Mathematica
    CoefficientList[Series[(1-x)*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1-Sqrt[1-4*x])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • Maxima
    a(n):=(sum((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1)),k,0,n-1))+(-1)^(n); /* Vladimir Kruchinin, Mar 06 2016 */
    
  • PARI
    my(x='x+O('x^25)); Vec((1-x)*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1-sqrt(1-4*x))/2/x) \\ G. C. Greubel, Feb 08 2017

Formula

G.f.: (1-x)*C*F, where F = (1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x))) and C = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = (Sum_{k=0..n-1}((k+2)*(-1)^k*(binomial(2*n-k+1,n-k)/(n+2)-binomial(2*n-k-1,n-k-1)/(n+1))))+(-1)^(n). - Vladimir Kruchinin. Mar 06 2016
D-finite with recurrence +2*(n+2)*a(n) +(-7*n-2)*a(n-1) +2*(-3*n+1)*a(n-2) +(7*n-26)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 26 2022

A118974 Sum of the lengths of the first descents in all hill-free Dyck paths of semilength n (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

0, 0, 2, 4, 11, 31, 94, 298, 977, 3283, 11243, 39087, 137569, 489171, 1754596, 6340756, 23063731, 84372061, 310216081, 1145748061, 4248861631, 15814069951, 59054807821, 221197379221, 830819449003, 3128511421663, 11808294045071, 44666151392095, 169294875129839
Offset: 0

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Examples

			a(4)=11 because in the hill-free Dyck paths of semilength 4, namely uu(dd)uudd, uu(d)uuddd, uu(d)ududd, uuu(dd)udd, uuu(d)uddd and uuuu(dddd), the sum of the lengths of the first descents (shown between parentheses) is 2+1+1+2+1+4=11.
		

Crossrefs

Programs

  • Maple
    F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=series(z^2*C*F*(1+C-z*C)/(1-z),z=0,32): seq(coeff(g,z,n),n=0..28);
  • Mathematica
    CoefficientList[Series[x^2*(1-Sqrt[1-4*x])/2/x*(1-Sqrt[1-4*x])/x/(3-Sqrt[1-4*x])*(1+(1-Sqrt[1-4*x])/2/x-x*(1-Sqrt[1-4*x])/2/x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^50)); concat([0,0], Vec(x^2*(1-sqrt(1-4*x))/2/x*(1-sqrt(1-4*x))/x/(3-sqrt(1-4*x))*(1+(1-sqrt(1-4*x))/2/x-x*(1-sqrt(1-4*x))/2/x)/(1-x))) \\ G. C. Greubel, Mar 18 2017

Formula

a(n) = Sum_{k=1,..,n} k*A118972(n,k).
G.f.: z^2*C*F*(1+C-z*C)/(1-z), where F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) and C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 17*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+1)*(17*n^2-65*n+60)*a(n) -3*(3*n-4)*(17*n^2-48*n+15)*a(n-1) +3*(17*n^3-82*n^2+121*n-60)*a(n-2) +2*(2*n-5) *(17*n^2-31*n+12) *a(n-3)=0. - R. J. Mathar, Jun 22 2016
Showing 1-3 of 3 results.