A118976 Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right.
1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 11, 30, 30, 11, 1, 16, 65, 100, 65, 16, 1, 22, 126, 280, 280, 126, 22, 1, 29, 224, 686, 980, 686, 224, 29, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1, 46, 585, 3060, 7812, 10584, 7812, 3060, 585, 46, 1, 56, 880, 5775, 18810, 33264, 33264, 18810, 5775, 880, 56, 1
Offset: 1
Examples
First few rows of the triangle: 1; 2, 1; 4, 4, 1; 7, 12, 7, 1; 11, 30, 30, 11, 1; 16, 65, 100, 65, 16, 1; ... Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)).
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # G. C. Greubel, Aug 12 2019
-
Magma
B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 12 2019
-
Maple
T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form # Alternatively: gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x): sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)): seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Oct 21 2020
-
Mathematica
With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Aug 12 2019 *)
-
PARI
T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1); for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 12 2019
-
Sage
def T(n, k): b=binomial return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 12 2019
Formula
G.f.: A001263(x, y)*(x + x*y) + x*y. - Vladimir Kruchinin, Oct 21 2020
Extensions
Edited by N. J. A. Sloane, Nov 29 2006
Comments