cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086900 Number of real n X n symmetric (0,1) matrices with positive determinant.

Original entry on oeis.org

1, 1, 5, 338, 14186, 526876, 52658844, 28076946520, 18518751047608, 13637385623943256
Offset: 1

Views

Author

Wouter Meeussen, Aug 23 2003

Keywords

Examples

			For n = 2 the only example is the identity matrix.
		

Crossrefs

Programs

  • Mathematica
    triamat[li_List] := Block[{len=Sqrt[8Length[li]+1]/2-1/2}, If[IntegerQ[len], Part[li, # ]& /@ Table[If[j>i, j(j-1)/2+i, i(i-1)/2+j], {i, len}, {j, len}], li]]; Table[it=triamat/@ IntegerDigits[Range[0, -1+2^(n(n+1)/2)], 2, n(n+1)/2]; Count[it, (q_)?MatrixQ/;(Det[q]>0)], {n, 5}]

Formula

a(n) = A086899(n) - A118996(n) = 2^(n*(n+1)/2) - A086906(n) - A118996(n). - Max Alekseyev, Jun 12 2025

Extensions

a(6)-a(7) from Giovanni Resta, May 08 2006
a(8)-a(10) from Max Alekseyev, Jun 17 2025

A118993 Number of real n X n symmetric (+1,-1) matrices with nonzero permanent.

Original entry on oeis.org

2, 4, 64, 832, 23808, 1725952, 268435456, 64638447616, 33770336417792
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118999 Number of real n X n symmetric (+1,-1) matrices with negative permanent.

Original entry on oeis.org

1, 0, 32, 240, 11904, 533568, 134217728, 22741568512, 16885168208896
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = A118993(n) - A118995(n). For odd n, a(n) = A118995(n) = A118993(n)/2. - Max Alekseyev, Jun 18 2025

Extensions

a(1) corrected and a(8)-a(9) added by Max Alekseyev, Jun 18 2025

A119001 Minimal permanent of real n X n symmetric (+1,-1) matrices.

Original entry on oeis.org

-1, 0, -6, -8, -120, -96, -5040, -4320, -362880
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

For odd n, a(n) = -n!. - Max Alekseyev, Jun 18 2025

A119010 Number of symmetric n X n (+1,-1)-matrices over the reals with zero permanent.

Original entry on oeis.org

0, 4, 0, 192, 8960, 371200, 0, 4081029120, 1414035671040
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118994 Number of real n X n symmetric (+1,-1) matrices with positive determinant.

Original entry on oeis.org

1, 0, 16, 432, 8448, 282240, 81949952, 32715189248, 12792558313472, 9318420858593280
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(n) local Q,q,X,x,t,A,ii,L,v;
      Q:= [[1,1],seq(seq([i,j],i=2..j),j=2..n)];
      q:= nops(Q);
      X:= [seq(x[q[1],q[2]],q=Q)];
      t:= 0:
      A:= Matrix(n,n,shape=symmetric,symbol=x);
      A[2..n,1]:= Vector(n-1,1);
      for ii from 0 to 2^q-1 do
        L:= map(s -> 2*s-1, convert(2^q+ii,base,2)[1..q]);
        v:= LinearAlgebra:-Determinant(subs(zip(`=`,X,L),A));
        if v > 0 then t:= t+1 fi
      od;
      2^(n-1)*t;
    end proc:
    seq(F(n),n=1..7); # Robert Israel, Apr 14 2016

Formula

a(n) = A118992(n) - A118997(n). For odd n, a(n) = A118997(n) = A118992(n)/2. - Max Alekseyev, Jun 12 2025

Extensions

a(8) from Robert Israel, Apr 17 2016
a(9)-a(10) from Max Alekseyev, Jun 17 2025

A105641 Number of hill-free Dyck paths of semilength n, having no UUDD's, where U=(1,1) and D=(1,-1) (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

0, 1, 2, 5, 14, 39, 111, 322, 947, 2818, 8470, 25677, 78420, 241061, 745265, 2315794, 7228702, 22656505, 71273364, 224965675, 712249471, 2261326010, 7197988973, 22966210236, 73437955105, 235307698544, 755395560220, 2429293941019
Offset: 2

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Comments

a(n) = A105640(n,0).

Examples

			a(4)=2 because we have UUDUDUDD and UUUDUDDD.
		

Crossrefs

Cf. A118995.

Programs

  • Maple
    G:=((1+z)^2-sqrt((1+z^2)^2-4*z))/2/z/(2+z+z^2)-1: Gser:=series(G,z=0,36): seq(coeff(Gser,z^n),n=2..32);

Formula

G.f.: [(1+z)^2-sqrt((1+z^2)^2-4z)]/[2z(2+z+z^2)]-1.
D-finite with recurrence 2*(n+1)*a(n) +(-7*n+5)*a(n-1) +(n-5)*a(n-2) +2*(-n-1)*a(n-3) +2*(2*n-7)*a(n-4) +(n-5)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
Showing 1-7 of 7 results.