cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118993 Number of real n X n symmetric (+1,-1) matrices with nonzero permanent.

Original entry on oeis.org

2, 4, 64, 832, 23808, 1725952, 268435456, 64638447616, 33770336417792
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118995 Number of real n X n symmetric (+1,-1) matrices with positive permanent.

Original entry on oeis.org

1, 4, 32, 592, 11904, 1192384, 134217728, 41896879104, 16885168208896
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = A118993(n) - A118999(n). For odd n, a(n) = A118999(n) = A118993(n)/2. - Max Alekseyev, Jun 18 2025

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118999 Number of real n X n symmetric (+1,-1) matrices with negative permanent.

Original entry on oeis.org

1, 0, 32, 240, 11904, 533568, 134217728, 22741568512, 16885168208896
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = A118993(n) - A118995(n). For odd n, a(n) = A118995(n) = A118993(n)/2. - Max Alekseyev, Jun 18 2025

Extensions

a(1) corrected and a(8)-a(9) added by Max Alekseyev, Jun 18 2025

A119010 Number of symmetric n X n (+1,-1)-matrices over the reals with zero permanent.

Original entry on oeis.org

0, 4, 0, 192, 8960, 371200, 0, 4081029120, 1414035671040
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118998 Minimal determinant of real n X n symmetric (0,1) matrices.

Original entry on oeis.org

0, -1, -2, -3, -5, -9, -32, -56, -128, -320
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119003 Maximal determinant of real n X n symmetric (+1,-1) matrices.

Original entry on oeis.org

1, 0, 4, 16, 48, 160, 576, 4096, 14336, 65536
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Comments

Computation of the determinant of these two matrices:
{-1, -1, -1, -1, 1, 1, 1, -1},
{-1, 1, -1, 1, 1, 1, -1, 1},
{-1, -1, 1, 1, 1, -1, -1, -1},
{-1, 1, 1, 1, -1, 1, 1, -1},
{ 1, 1, 1, -1, 1, 1, -1, -1},
{ 1, 1, -1, 1, 1, -1, 1, -1},
{ 1, -1, -1, 1, -1, 1, -1, -1},
{-1, 1, -1, -1, -1, -1, -1, -1}
and
{-1, 1, 1, -1, 1, -1, 1, 1, 1},
{ 1, -1, 1, -1, 1, 1, 1, 1, -1},
{ 1, 1, 1, 1, 1, -1, -1, 1, -1},
{-1, -1, 1, 1, -1, 1, 1, -1, 1},
{ 1, 1, 1, -1, -1, -1, 1, -1, -1},
{-1, 1, -1, 1, -1, 1, 1, 1, -1},
{ 1, 1, -1, 1, 1, 1, 1, -1, 1},
{ 1, 1, 1, -1, -1, 1, -1, 1, 1},
{ 1, -1, -1, 1, -1, -1, 1, 1, 1}
shows that a(8) = A003433(8) = 4096 and a(9) = A003433(9) = 14336. - Jean-François Alcover, Nov 19 2017
a(n) = n^(n/2) once there exists a symmetric Hadamard matrix of order n. In particular, a(12) = 12^6, a(16) = 16^8, etc. - Max Alekseyev, Jun 17 2025

Crossrefs

Extensions

a(8) and a(9) from Jean-François Alcover, Nov 19 2017
a(10) from Max Alekseyev, Jun 17 2025

A119000 Minimal determinant of real n X n symmetric (+1,-1) matrices.

Original entry on oeis.org

-1, -2, -4, -16, -48, -160, -576, -2304, -14336, -73728
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025
Showing 1-7 of 7 results.