cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A119005 Number of n X n real symmetric (+1,-1)-matrices having maximal determinant (=A119003(n)).

Original entry on oeis.org

1, 4, 16, 48, 416, 3840, 161280, 215040, 15482880, 774144000
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119002 Maximal determinant of real n X n symmetric (0,1) matrices.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 18, 56, 144, 320
Offset: 0

Views

Author

Giovanni Resta, May 08 2006

Keywords

Comments

The determinant of this 8 X 8 matrix is a(8) = 56:
{0, 1, 1, 1, 0, 1, 0, 0},
{1, 0, 1, 1, 0, 1, 0, 0},
{1, 1, 0, 1, 0, 0, 1, 1},
{1, 1, 1, 0, 1, 0, 0, 1},
{0, 0, 0, 1, 1, 1, 0, 1},
{1, 1, 0, 0, 1, 1, 1, 0},
{0, 0, 1, 0, 0, 1, 1, 1},
{0, 0, 1, 1, 1, 0, 1, 0}
and the determinant of this 9 X 9 matrix is a(9) = 144:
{1, 1, 0, 1, 1, 0, 0, 1, 1},
{1, 1, 1, 1, 0, 1, 0, 0, 0},
{0, 1, 1, 1, 0, 0, 1, 1, 1},
{1, 1, 1, 0, 1, 0, 1, 0, 1},
{1, 0, 0, 1, 0, 1, 1, 0, 1},
{0, 1, 0, 0, 1, 1, 1, 1, 0},
{0, 0, 1, 1, 1, 1, 0, 0, 1},
{1, 0, 1, 0, 0, 1, 0, 1, 1},
{1, 0, 1, 1, 1, 0, 1, 1, 0}. - Jean-François Alcover, Nov 18 2017

Crossrefs

Formula

a(n) <= A003432(n).

Extensions

a(8) and a(9) from Jean-François Alcover, Nov 18 2017
a(0)=1 prepended by Alois P. Heinz, Nov 18 2017
a(10) from Max Alekseyev, Jun 17 2025

A118994 Number of real n X n symmetric (+1,-1) matrices with positive determinant.

Original entry on oeis.org

1, 0, 16, 432, 8448, 282240, 81949952, 32715189248, 12792558313472, 9318420858593280
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(n) local Q,q,X,x,t,A,ii,L,v;
      Q:= [[1,1],seq(seq([i,j],i=2..j),j=2..n)];
      q:= nops(Q);
      X:= [seq(x[q[1],q[2]],q=Q)];
      t:= 0:
      A:= Matrix(n,n,shape=symmetric,symbol=x);
      A[2..n,1]:= Vector(n-1,1);
      for ii from 0 to 2^q-1 do
        L:= map(s -> 2*s-1, convert(2^q+ii,base,2)[1..q]);
        v:= LinearAlgebra:-Determinant(subs(zip(`=`,X,L),A));
        if v > 0 then t:= t+1 fi
      od;
      2^(n-1)*t;
    end proc:
    seq(F(n),n=1..7); # Robert Israel, Apr 14 2016

Formula

a(n) = A118992(n) - A118997(n). For odd n, a(n) = A118997(n) = A118992(n)/2. - Max Alekseyev, Jun 12 2025

Extensions

a(8) from Robert Israel, Apr 17 2016
a(9)-a(10) from Max Alekseyev, Jun 17 2025

A119007 Number of n X n real symmetric (+1,-1)-matrices having minimal determinant (=A119000(n)).

Original entry on oeis.org

1, 4, 16, 16, 416, 10240, 161280, 645120, 15482880, 402554880
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119000 Minimal determinant of real n X n symmetric (+1,-1) matrices.

Original entry on oeis.org

-1, -2, -4, -16, -48, -160, -576, -2304, -14336, -73728
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025
Showing 1-5 of 5 results.