cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A119003 Maximal determinant of real n X n symmetric (+1,-1) matrices.

Original entry on oeis.org

1, 0, 4, 16, 48, 160, 576, 4096, 14336, 65536
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Comments

Computation of the determinant of these two matrices:
{-1, -1, -1, -1, 1, 1, 1, -1},
{-1, 1, -1, 1, 1, 1, -1, 1},
{-1, -1, 1, 1, 1, -1, -1, -1},
{-1, 1, 1, 1, -1, 1, 1, -1},
{ 1, 1, 1, -1, 1, 1, -1, -1},
{ 1, 1, -1, 1, 1, -1, 1, -1},
{ 1, -1, -1, 1, -1, 1, -1, -1},
{-1, 1, -1, -1, -1, -1, -1, -1}
and
{-1, 1, 1, -1, 1, -1, 1, 1, 1},
{ 1, -1, 1, -1, 1, 1, 1, 1, -1},
{ 1, 1, 1, 1, 1, -1, -1, 1, -1},
{-1, -1, 1, 1, -1, 1, 1, -1, 1},
{ 1, 1, 1, -1, -1, -1, 1, -1, -1},
{-1, 1, -1, 1, -1, 1, 1, 1, -1},
{ 1, 1, -1, 1, 1, 1, 1, -1, 1},
{ 1, 1, 1, -1, -1, 1, -1, 1, 1},
{ 1, -1, -1, 1, -1, -1, 1, 1, 1}
shows that a(8) = A003433(8) = 4096 and a(9) = A003433(9) = 14336. - Jean-François Alcover, Nov 19 2017
a(n) = n^(n/2) once there exists a symmetric Hadamard matrix of order n. In particular, a(12) = 12^6, a(16) = 16^8, etc. - Max Alekseyev, Jun 17 2025

Crossrefs

Extensions

a(8) and a(9) from Jean-François Alcover, Nov 19 2017
a(10) from Max Alekseyev, Jun 17 2025

A119007 Number of n X n real symmetric (+1,-1)-matrices having minimal determinant (=A119000(n)).

Original entry on oeis.org

1, 4, 16, 16, 416, 10240, 161280, 645120, 15482880, 402554880
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119004 Number of n X n real symmetric (0,1)-matrices having maximal determinant (=A119002(n)).

Original entry on oeis.org

1, 1, 1, 18, 160, 900, 2520, 36960, 393120, 15573600
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025
Showing 1-3 of 3 results.