A119016 Numerators of "Farey fraction" approximations to sqrt(2).
1, 0, 1, 2, 3, 4, 7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, 1393, 1970, 3363, 4756, 8119, 11482, 19601, 27720, 47321, 66922, 114243, 161564, 275807, 390050, 665857, 941664, 1607521, 2273378, 3880899, 5488420, 9369319, 13250218, 22619537, 31988856
Offset: 0
Examples
The fractions are 1/0, 0/1, 1/1, 2/1, 3/2, 4/3, 7/5, 10/7, 17/12, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Dave Rusin, Farey fractions on sci.math [Broken link]
- Dave Rusin, Farey fractions on sci.math [Cached copy]
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1).
Crossrefs
Programs
-
Maple
f:= gfun:-rectoproc({a(n+4)=2*a(n+2) +a(n),a(0)=1,a(1)=0,a(2)=1,a(3)=2}, a(n), remember): map(f, [$0..100]); # Robert Israel, Jun 10 2015
-
Mathematica
f[x_, n_] := (m = Floor[x]; f0 = {m, m+1/2, m+1}; r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c}; Join[{m, m+1}, NestList[# /. r &, f0, n-3][[All, 2]]]); Join[{1, 0 }, f[Sqrt[2], 38]] // Numerator (* Jean-François Alcover, May 18 2011 *) LinearRecurrence[{0, 2, 0, 1}, {1, 0, 1, 2}, 40] (* and *) t = {1, 2}; Do[AppendTo[t, t[[-2]] + t[[-1]]]; AppendTo[t, t[[-3]] + t[[-1]]], {n, 30}]; t (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *) a0 := LinearRecurrence[{2, 1}, {1, 1}, 20]; (* A001333 *) a1 := LinearRecurrence[{2, 1}, {0, 2}, 20]; (* 2 * A000129 *) Flatten[MapIndexed[{a0[[#]],a1[[#]]} &, Range[20]]] (* Gerry Martens, Jun 09 2015 *)
-
PARI
x='x+O('x^50); Vec((1 - x^2 + 2*x^3)/(1 - 2*x^2 - x^4)) \\ G. C. Greubel, Oct 20 2017
Formula
From Joerg Arndt, Feb 14 2012: (Start)
a(0) = 1, a(1) = 0, a(2n) = a(2n-1) + a(2n-2), a(2n+1) = a(2n) + a(2n-2).
G.f.: (1 - x^2 + 2*x^3)/(1 - 2*x^2 - x^4). (End)
a(n) = 1/4*(1-(-1)^n)*(-2+sqrt(2))*(1+sqrt(2))*((1-sqrt(2))^(1/2*(n-1))-(1+sqrt(2))^(1/2*(n-1)))+1/4*(1+(-1)^n)*((1-sqrt(2))^(n/2)+(1+sqrt(2))^(n/2)). - Gerry Martens, Nov 04 2012
Comments