cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119160 Triangular numbers composed of digits {2,4,6}.

Original entry on oeis.org

6, 66, 666, 426426, 266262426, 22464262666, 46624464466426, 644644226644644222426, 46424226426466426446424262644446, 626644642222466644646226466422666
Offset: 1

Views

Author

Giovanni Resta, May 10 2006

Keywords

Comments

All terms end in 6. - Robert Israel, Feb 05 2016
a(11) > 10^40. - Tyler Busby, Mar 29 2023

Crossrefs

Cf. A000217, A053923, A119161. See A119033 for a table of cross-references.

Programs

  • Magma
    [t: n in [1..2*10^7] | Set(Intseq(t)) subset {2, 4, 6} where t is n*(n+1) div 2]; // Vincenzo Librandi, Feb 04 2016
  • Maple
    F:= proc(d) # get all terms with d digits
    local res, m, prefs,i,t,qmax,qmin,smax,smin,cand,s;
      res:= NULL;
      m:= max(1,floor(d/2-1));
      prefs:= [2,4,6]*10^(d-1);
      for i from 1 to m-1 do
        prefs:= map(t -> (t + 2*10^(d-1-i),t+4*10^(d-1-i),t+6*10^(d-1-i)), prefs)
      od;
      for t in prefs do
           qmax:= t + 6*(10^(d-m)-1)/9; smax:= floor(sqrt(8*qmax+1));
           qmin:= t + 2*(10^(d-m)-1)/9; smin:= ceil(sqrt(8*qmin+1));
           smin:= smin + 1 - (smin mod 2);
           for s from smin to smax by 2 do
               cand:= (s^2 -1)/8;
               if cand mod 10 = 6 and convert(convert(cand,base,10),set) subset {2,4,6} then
                  res:= res, cand;
               fi
           od
      od;
    res;
    end proc:
    seq(F(d),d=1..21);  # Robert Israel, Feb 05 2016
  • Mathematica
    Select[#*(# + 1)/2 & /@
      Range[1000000], !
    MemberQ[IntegerDigits[#], 0 | 1 | 3 | 5 | 7 | 8 | 9] &] (*Julien Kluge, Feb 01 2016*)

Formula

a(n) = A000217(A119161(n)). - Tyler Busby, Mar 29 2023

Extensions

a(10) from Max Alekseyev, Jun 16 2011