A119160 Triangular numbers composed of digits {2,4,6}.
6, 66, 666, 426426, 266262426, 22464262666, 46624464466426, 644644226644644222426, 46424226426466426446424262644446, 626644642222466644646226466422666
Offset: 1
Links
- Giovanni Resta, Tridigital Triangular Numbers.
Programs
-
Magma
[t: n in [1..2*10^7] | Set(Intseq(t)) subset {2, 4, 6} where t is n*(n+1) div 2]; // Vincenzo Librandi, Feb 04 2016
-
Maple
F:= proc(d) # get all terms with d digits local res, m, prefs,i,t,qmax,qmin,smax,smin,cand,s; res:= NULL; m:= max(1,floor(d/2-1)); prefs:= [2,4,6]*10^(d-1); for i from 1 to m-1 do prefs:= map(t -> (t + 2*10^(d-1-i),t+4*10^(d-1-i),t+6*10^(d-1-i)), prefs) od; for t in prefs do qmax:= t + 6*(10^(d-m)-1)/9; smax:= floor(sqrt(8*qmax+1)); qmin:= t + 2*(10^(d-m)-1)/9; smin:= ceil(sqrt(8*qmin+1)); smin:= smin + 1 - (smin mod 2); for s from smin to smax by 2 do cand:= (s^2 -1)/8; if cand mod 10 = 6 and convert(convert(cand,base,10),set) subset {2,4,6} then res:= res, cand; fi od od; res; end proc: seq(F(d),d=1..21); # Robert Israel, Feb 05 2016
-
Mathematica
Select[#*(# + 1)/2 & /@ Range[1000000], ! MemberQ[IntegerDigits[#], 0 | 1 | 3 | 5 | 7 | 8 | 9] &] (*Julien Kluge, Feb 01 2016*)
Formula
Extensions
a(10) from Max Alekseyev, Jun 16 2011
Comments