cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119244 Eigenvector of triangle A119245, so that a(n) = Sum_{k=0..floor(n/2)} A119245(n,k)*a(k).

Original entry on oeis.org

1, 1, 3, 10, 37, 144, 579, 2379, 9927, 41905, 178498, 765876, 3305926, 14342635, 62496000, 273347910, 1199555865, 5279624910, 23298471120, 103057254030, 456833819925, 2028998199360, 9027655451400, 40232167135245
Offset: 0

Views

Author

Paul D. Hanna, May 10 2006

Keywords

Comments

Self-convolution equals A119243, which is the eigenvector of triangle A118919.

Crossrefs

Cf. A119245, A119243 (self-convolution).

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,a(k)*(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)))}
    
  • PARI
    seq(n) = {my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n] = sum(k=0, n\2, a[1+k]*(4*k+1)*binomial(2*n+1,n-2*k))/(2*n+1)); a} \\ Andrew Howroyd, Sep 19 2023

Formula

G.f. A(x) satisfies: A(x) = A(-x/(1-4*x))/sqrt(1-4*x).
Eigenvector: a(n) = Sum_{k=0..floor(n/2)} a(k)*(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1) for n>=0, with a(0)=1.
From Peter Bala, Sep 16 2023: (Start)
It appears that the g.f. A(x) satisfies A(x^2) = 1/(1 + x)*A(x/(1 + x)^2).
If true, then F(x) := A(x^2) satisfies the functional equation F(x^2) = 1/(1 + x^2)*F(x/(1 + x^2)). Compare with Landen's transformation K(x^2) = 1/(1 + x^2)*K(2*x/(1 + x^2)) (for 0 <= x < 1) for the complete elliptic integral of the first kind K(x) = Integral_{t = 0..Pi/2} dt/sqrt(1 - x^2*sin^2(t)). (End)

A118919 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that cross downwards the x-axis k times. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)).

Original entry on oeis.org

1, 2, 5, 1, 14, 6, 42, 27, 1, 132, 110, 10, 429, 429, 65, 1, 1430, 1638, 350, 14, 4862, 6188, 1700, 119, 1, 16796, 23256, 7752, 798, 18, 58786, 87210, 33915, 4655, 189, 1, 208012, 326876, 144210, 24794, 1518, 22, 742900, 1225785, 600875, 123970, 10350
Offset: 0

Views

Author

Emeric Deutsch, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/2) terms. Row sums are the central binomial coefficients (A000984). T(n,0)=A000108(n+1) (the Catalan numbers). T(n,1)=A003517(n). T(n,2)=A003519(n). Sum(k*T(n,k),k>=0)=A008549(n-1). For both downward and upward crossings, see A118920.
Eigenvector is defined by: A119243(n) = Sum_{k=0..[n\2]} T(n,k)*A119243(k). This triangle is closely related to triangle A119245. - Paul D. Hanna, May 10 2006
Column k is the sum of columns 2k and 2k+1 of A039599. - Philippe Deléham, Nov 11 2008

Examples

			T(3,1)=6 because we have ud\dudu,ud\dduu,udud\du,uudd\du,ud\duud and duud\du (the downward crossings of the x-axis are shown by a back-slash \).
Triangle starts:
  1;
  2;
  5,1;
  14,6;
  42,27,1;
  132,110,10;
		

Crossrefs

Cf. A119243 (eigenvector), A119245 (variant).

Programs

  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n+2,n-2*k)/(n+1): for n from 0 to 13 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • PARI
    T(n,k)=if(n<2*k || k<0,0,(2*k+1)*binomial(2*n+2,n-2*k)/(n+1)) \\ Paul D. Hanna, May 10 2006

Formula

T(n,k)=(2k+1)binomial(2n+2,n-2k)/(n+1). G.f.=G(t,z)=C^2/(1-tz^2*C^4), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
T(n,k)=A039599(n,2k)+A039599(n,2k+1). - Philippe Deléham, Nov 11 2008

A119243 Eigenvector of triangle A118919, so that a(n) = Sum_{k=0..floor(n/2)} A118919(n,k)*a(k).

Original entry on oeis.org

1, 2, 7, 26, 103, 422, 1768, 7520, 32335, 140174, 611530, 2681516, 11807683, 52177166, 231262945, 1027703054, 4577477065, 20429990450, 91348096963, 409110897122, 1834954888618, 8241277167236, 37059369415102
Offset: 0

Views

Author

Paul D. Hanna, May 10 2006

Keywords

Comments

Equals the self-convolution of A119244, which is the eigenvector of triangle A119245.

Crossrefs

Cf. A118919, A119244 (A(x)^(1/2)), A119245.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,a(k)*(2*k+1)*binomial(2*n+2,n-2*k)/(n+1)))}
    
  • PARI
    seq(n) = {my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n] = sum(k=0, n\2, a[1+k]*(2*k+1)*binomial(2*n+2,n-2*k))/(n+1)); a} \\ Andrew Howroyd, Sep 19 2023

Formula

G.f. A(x) satisfies: A(x) = A(-x/(1-4*x))/(1-4*x).
Eigenvector: a(n) = Sum_{k=0..floor(n/2)} a(k)*(2*k+1)*binomial(2*n+2,n-2*k)/(n+1) for n>=0, with a(0)=1.
It appears that the g.f. A(x) satisfies A(x^2) = 1/(1 + x)^2*A(x/(1 + x)^2). - Peter Bala, Sep 16 2023

A158483 Triangle read by rows: T(n,k) = (4k+3)/(n+2k+2)*binomial(2n,n+2k+1).

Original entry on oeis.org

0, 1, 3, 9, 1, 28, 7, 90, 35, 1, 297, 154, 11, 1001, 637, 77, 1, 3432, 2548, 440, 15, 11934, 9996, 2244, 135, 1, 41990, 38760, 10659, 950, 19, 149226, 149226, 48279, 5775, 209, 1, 534888, 572033, 211508, 31878, 1748, 23, 1931540, 2187185, 904475, 164450
Offset: 0

Views

Author

Peter Bala, Mar 20 2009

Keywords

Comments

This triangle forms a companion to A119245.
Combinatorial interpretations of T(n,k):
1) The number of standard tableaux of shape (n-2*k-1,n+2*k+1).
2) The entries in column k are (with an offset of 2*k+1) the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4*k+2. See [Sunik, Theorem 4].

Examples

			Triangle begins
==================================
n\k|.....0.....1.....2.....3.....4
==================================
.0.|.....0
.1.|.....1
.2.|.....3
.3.|.....9.....1
.4.|....28.....7
.5.|....90....35.....1
.6.|...297...154....11
.7.|..1001...637....77.....1
.8.|..3432..2548...440....15
.9.|.11934..9996..2244...135.....1
		

Crossrefs

Cf. A000245 (column 0), A000588 (column 1), A000589 (column 2), A001700 (row sums), A119245.

Programs

  • Maple
    with(combinat): T:=(n,k) -> (4k+3)/(n+2k+2)*binomial(2n,n+2k+1): for n from 0 to 13 do seq(T(n,k),k = 0..6); end do;

Formula

T(n,k) = (4*k+3)/(n+2*k+2)*binomial(2*n,n+2*k+1).
O.g.f. y*C(y)^3/(1 - x*y^2*C(y)^4) = y + 3*y^2 + (9 + x)*y^3 + (28 + 7*x)*y^4 + ..., where C(x) = [1-(1-4*x)^(1/2)]/(2*x) is the o.g.f. for the Catalan numbers A000108.
Row sums A001700.
Showing 1-4 of 4 results.