A119244
Eigenvector of triangle A119245, so that a(n) = Sum_{k=0..floor(n/2)} A119245(n,k)*a(k).
Original entry on oeis.org
1, 1, 3, 10, 37, 144, 579, 2379, 9927, 41905, 178498, 765876, 3305926, 14342635, 62496000, 273347910, 1199555865, 5279624910, 23298471120, 103057254030, 456833819925, 2028998199360, 9027655451400, 40232167135245
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n\2,a(k)*(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)))}
-
seq(n) = {my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n] = sum(k=0, n\2, a[1+k]*(4*k+1)*binomial(2*n+1,n-2*k))/(2*n+1)); a} \\ Andrew Howroyd, Sep 19 2023
A118919
Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that cross downwards the x-axis k times. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)).
Original entry on oeis.org
1, 2, 5, 1, 14, 6, 42, 27, 1, 132, 110, 10, 429, 429, 65, 1, 1430, 1638, 350, 14, 4862, 6188, 1700, 119, 1, 16796, 23256, 7752, 798, 18, 58786, 87210, 33915, 4655, 189, 1, 208012, 326876, 144210, 24794, 1518, 22, 742900, 1225785, 600875, 123970, 10350
Offset: 0
T(3,1)=6 because we have ud\dudu,ud\dduu,udud\du,uudd\du,ud\duud and duud\du (the downward crossings of the x-axis are shown by a back-slash \).
Triangle starts:
1;
2;
5,1;
14,6;
42,27,1;
132,110,10;
-
T:=(n,k)->(2*k+1)*binomial(2*n+2,n-2*k)/(n+1): for n from 0 to 13 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
T(n,k)=if(n<2*k || k<0,0,(2*k+1)*binomial(2*n+2,n-2*k)/(n+1)) \\ Paul D. Hanna, May 10 2006
A119243
Eigenvector of triangle A118919, so that a(n) = Sum_{k=0..floor(n/2)} A118919(n,k)*a(k).
Original entry on oeis.org
1, 2, 7, 26, 103, 422, 1768, 7520, 32335, 140174, 611530, 2681516, 11807683, 52177166, 231262945, 1027703054, 4577477065, 20429990450, 91348096963, 409110897122, 1834954888618, 8241277167236, 37059369415102
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n\2,a(k)*(2*k+1)*binomial(2*n+2,n-2*k)/(n+1)))}
-
seq(n) = {my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n] = sum(k=0, n\2, a[1+k]*(2*k+1)*binomial(2*n+2,n-2*k))/(n+1)); a} \\ Andrew Howroyd, Sep 19 2023
A158483
Triangle read by rows: T(n,k) = (4k+3)/(n+2k+2)*binomial(2n,n+2k+1).
Original entry on oeis.org
0, 1, 3, 9, 1, 28, 7, 90, 35, 1, 297, 154, 11, 1001, 637, 77, 1, 3432, 2548, 440, 15, 11934, 9996, 2244, 135, 1, 41990, 38760, 10659, 950, 19, 149226, 149226, 48279, 5775, 209, 1, 534888, 572033, 211508, 31878, 1748, 23, 1931540, 2187185, 904475, 164450
Offset: 0
Triangle begins
==================================
n\k|.....0.....1.....2.....3.....4
==================================
.0.|.....0
.1.|.....1
.2.|.....3
.3.|.....9.....1
.4.|....28.....7
.5.|....90....35.....1
.6.|...297...154....11
.7.|..1001...637....77.....1
.8.|..3432..2548...440....15
.9.|.11934..9996..2244...135.....1
-
with(combinat): T:=(n,k) -> (4k+3)/(n+2k+2)*binomial(2n,n+2k+1): for n from 0 to 13 do seq(T(n,k),k = 0..6); end do;
Showing 1-4 of 4 results.
Comments