cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066386 Numbers k such that k^6 + 1091 is prime.

Original entry on oeis.org

0, 3906, 4620, 5166, 5376, 5460, 8190, 13020, 13986, 14490, 17934, 19740, 19950, 20664, 23226, 24654, 29736, 30114, 31206, 33516, 33600, 34104, 34314, 40320, 41286, 44016, 45066, 46116, 47754, 48300, 59850, 62244, 63420, 65310, 66864
Offset: 1

Views

Author

Harvey P. Dale, Dec 23 2001

Keywords

References

  • D. Shanks, Solved and unsolved problems in number theory, Chelsea NY, 1985, p. 222, ex. 162.
  • D. Shanks, A low density of primes, Jour. Recreational Math. 5 (1971) 272-5.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 151 (Rev. ed. 1997)
  • Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 42, 172

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], PrimeQ[ #^6 + 1091] &]
  • PARI
    { n=0; for (m=0, 10^9, if (isprime(m^6 + 1091), write("b066386.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 13 2010

Extensions

0 added by Zak Seidov, Jan 26 2009

A161998 Numbers n such that n^6 + 272 is prime.

Original entry on oeis.org

2163, 2541, 2667, 4011, 5187, 5733, 5985, 7119, 7371, 7707, 8547, 10017, 10731, 12579, 13041, 13125, 13293, 14007, 14679, 15855, 16317, 16401, 16863, 17283, 19131, 19383, 20139, 20475, 21021, 21357, 22197, 22995, 23457, 23667, 24591, 25053, 25389, 25641
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 24 2009

Keywords

Crossrefs

Programs

A163592 Numbers n such that n^6 + 545 is prime.

Original entry on oeis.org

84, 1302, 10584, 11382, 12012, 12558, 13356, 15498, 19362, 20286, 20496, 22092, 23142, 23772, 25452, 26418, 26502, 26544, 28644, 29274, 29778, 31374, 31962, 35406, 36876, 37338, 39522, 40152, 40488, 41286, 42924, 43428, 45108, 46116, 47754, 47796, 48678
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 01 2009

Keywords

Crossrefs

Programs

Showing 1-3 of 3 results.