A119282 Alternating sum of the first n Fibonacci numbers.
0, -1, 0, -2, 1, -4, 4, -9, 12, -22, 33, -56, 88, -145, 232, -378, 609, -988, 1596, -2585, 4180, -6766, 10945, -17712, 28656, -46369, 75024, -121394, 196417, -317812, 514228, -832041, 1346268, -2178310, 3524577, -5702888, 9227464, -14930353, 24157816, -39088170, 63245985, -102334156, 165580140, -267914297, 433494436, -701408734, 1134903169, -1836311904, 2971215072, -4807526977, 7778742048
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (0,2,-1)
Programs
-
Magma
[0] cat [(&+[(-1)^k*Fibonacci(k):k in [1..n]]): n in [1..30]]; // G. C. Greubel, Jan 17 2018
-
Mathematica
FoldList[#1 - Fibonacci@ #2 &, -Range@ 50] (* Michael De Vlieger, Jan 27 2016 *) Accumulate[Table[(-1)^n Fibonacci[n], {n, 0, 49}]] (* Alonso del Arte, Apr 25 2017 *)
-
PARI
a(n) = sum(k=1, n, (-1)^k*fibonacci(k)); \\ Michel Marcus, Jan 27 2016
Formula
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k = 1..n} (-1)^k F(k).
Closed form: a(n) = (-1)^n F(n-1) - 1 = (-1)^n A008346(n-1).
Recurrence: a(n) - 2 a(n-2) + a(n-3)= 0.
G.f.: A(x) = -x/(1 - 2 x^2 + x^3) = -x/((1 - x)(1 + x - x^2)).
Another recurrence: a(n) = a(n-2) - a(n-1) - 1. - Rick L. Shepherd, Aug 12 2009
Comments