cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 11, 17, 11, 1, 1, 1, 1, 1, 1, 21, 41, 41, 21, 1, 1, 1, 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1, 1, 1, 1, 57, 141, 201, 201, 141, 57, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, May 14 2006

Keywords

Comments

Row sums are A119336. Product of Pascal's triangle and A119337.

Examples

			Triangle begins
1;
1, 1;
1, 1, 1;
1, 1, 1,  1;
1, 1, 1,  1,  1;
1, 1, 1,  1,  1,   1;
1, 1, 1,  2,  1,   1,  1;
1, 1, 1,  5,  5,   1,  1,  1;
1, 1, 1, 11, 17,  11,  1,  1, 1;
1, 1, 1, 21, 41,  41, 21,  1, 1, 1;
1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1;
		

Crossrefs

T(2n,n) gives A119363.
Cf. A119326.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023 *)

Formula

Column k has g.f. (x^k/(1-x)) * Sum_{j=0..k} C(k,3j)(x/(1-x))^(3j).

Extensions

More terms from Seiichi Manyama, Mar 12 2019