A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 11, 17, 11, 1, 1, 1, 1, 1, 1, 21, 41, 41, 21, 1, 1, 1, 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1, 1, 1, 1, 57, 141, 201, 201, 141, 57, 1, 1, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1; 1, 1, 1, 2, 1, 1, 1; 1, 1, 1, 5, 5, 1, 1, 1; 1, 1, 1, 11, 17, 11, 1, 1, 1; 1, 1, 1, 21, 41, 41, 21, 1, 1, 1; 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023 *)
Formula
Column k has g.f. (x^k/(1-x)) * Sum_{j=0..k} C(k,3j)(x/(1-x))^(3j).
Extensions
More terms from Seiichi Manyama, Mar 12 2019
Comments