cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A375970 a(n) is the largest number k such that k^2 divides the square pyramidal number A000330(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 5, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 70, 5, 3, 3, 1, 1, 1, 4, 4, 1, 1, 1, 1, 5, 1, 2, 6, 1, 1, 1, 1, 1, 1, 2, 14, 35, 5, 1, 1, 3, 3, 2, 2, 1, 1, 1, 11, 1, 5, 4, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 5, 5, 1, 1, 1, 2, 6, 3, 1, 1, 13, 1, 1, 10, 2, 1, 1, 1, 1, 1, 3, 4, 4, 7
Offset: 1

Views

Author

Robert Israel, Sep 04 2024

Keywords

Comments

a(n)^2 is the largest square that divides n*(n+1)*(2*n+1)/6.

Examples

			a(12) = 5 because A000330(12) = 650 = 2 * 5^2 = 13 and 5^2 is the largest square dividing 650.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) local t,s,F; t:= n*(n+1)*(2*n+1)/6;
      F:= ifactors(t)[2];
      mul(s[1]^floor(s[2]/2), s=F)
    end proc:
    map(g, [$1..100]);
  • PARI
    a(n) = my(m=n*(n+1)*(2*n+1)/6); sqrtint(m/core(m)); \\ Michel Marcus, Sep 06 2024

Formula

a(n) = A000188(A000330(n)).
Showing 1-1 of 1 results.