cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119376 Second diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.

Original entry on oeis.org

1, 4, 16, 63, 248, 980, 3894, 15563, 62555, 252789, 1026623, 4188390, 17159382, 70570380, 291253664, 1205935204, 5008047097, 20854723702, 87064706122, 364334839028, 1527943938306, 6420911995109, 27033938458595
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Comments

Equals convolution of A119370 and A119375, which is the prior diagonal above the central terms of triangle A119369.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< x | Sqrt(1-4*x-2*x^2+x^4) >;
    Coefficients(R!( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    f[x_]:= Sqrt[1-4*x-2*x^2+x^4];
    CoefficientList[Series[2*(1-2*x-x^2 -f[x])/(x^2*(1+2*x^3+x^4 +(1+x)^2*f[x])*(1+x^2 +f[x])), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n)=polcoeff(4/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))^2* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
    
  • SageMath
    def f(x): return sqrt(1-4*x-2*x^2+x^4)
    def A119376_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) ).list()
    A119376_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = B(x)^2*(G(x) - 1)/x^2 = B(x)^2*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
G.f.: 2*(1-2*x-x^2-f(x))/( x^2*(1+2*x^3+x^4+(1+x)^2*f(x))*(1+x^2+f(x)) ) where f(x) = sqrt(1-4*x-2*x^2+x^4). - G. C. Greubel, Mar 17 2021