A119376 Second diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.
1, 4, 16, 63, 248, 980, 3894, 15563, 62555, 252789, 1026623, 4188390, 17159382, 70570380, 291253664, 1205935204, 5008047097, 20854723702, 87064706122, 364334839028, 1527943938306, 6420911995109, 27033938458595
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); f:= func< x | Sqrt(1-4*x-2*x^2+x^4) >; Coefficients(R!( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) )); // G. C. Greubel, Mar 17 2021 -
Mathematica
f[x_]:= Sqrt[1-4*x-2*x^2+x^4]; CoefficientList[Series[2*(1-2*x-x^2 -f[x])/(x^2*(1+2*x^3+x^4 +(1+x)^2*f[x])*(1+x^2 +f[x])), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
-
PARI
{a(n)=polcoeff(4/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))^2* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
-
SageMath
def f(x): return sqrt(1-4*x-2*x^2+x^4) def A119376_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) ).list() A119376_list(30) # G. C. Greubel, Mar 17 2021
Formula
G.f.: A(x) = B(x)^2*(G(x) - 1)/x^2 = B(x)^2*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
G.f.: 2*(1-2*x-x^2-f(x))/( x^2*(1+2*x^3+x^4+(1+x)^2*f(x))*(1+x^2+f(x)) ) where f(x) = sqrt(1-4*x-2*x^2+x^4). - G. C. Greubel, Mar 17 2021
Comments