A119395 Number of nonnegative integer solutions to the equation x^2 + 3y^2 = n.
1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QP = QPochhammer; s = (QP[q^2]*QP[q^6])^5/(QP[q]*QP[q^3]*QP[q^4]*QP[q^12])^2 + O[q]^105; A033716 = CoefficientList[s, q]; A119395 = Ceiling[A033716/4] (* Jean-François Alcover, Jul 02 2018 *)
-
PARI
{ A033716(n) = local(f,B); f=factorint(n); B=1; for(i=1,matsize(f)[1], if(f[i,1]%3==1,B*=f[i,2]+1); if(f[i,1]%3==2,if(f[i,2]%2,return(0)))); if(n%4,2*B,6*B) } { a(n) = ceil(A033716(n)/4) }
Formula
For n > 0, a(n) = (A033716(n) + 2)/4 if n is a square or a triple of a square; otherwise a(n) = A033716(n)/4. Alternatively, a(n) = ceiling(A033716(n)/4).
G.f.: (1 + theta_3(q))*(1 + theta_3(q^3))/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018
Comments