cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119408 Decimal equivalent of the binary string generated by the n X n identity matrix.

Original entry on oeis.org

1, 9, 273, 33825, 17043521, 34630287489, 282578800148737, 9241421688590303745, 1210107565283851686118401, 634134936313486520338360567809, 1329552593586084350528447794605199361, 11151733894906779683522195341810241573494785
Offset: 1

Views

Author

Lynn R. Purser, Jul 25 2006

Keywords

Comments

a(n) is divisible by 2^n - 1. a(n) == n mod 2^(n+1) - 1. - Robert Israel, Jun 09 2015

Examples

			n=2: [1 0; 0 1] == 1001_2 = 9;
n=3: [1 0 0; 0 1 0; 0 0 1] == 100010001_2 = 273;
n=4: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] == 1000010000100001_2 = 33825.
		

Crossrefs

Cf. A128889.

Programs

  • MATLAB
    for n = 1:10 bi2de((reshape(eye(n),length(eye(n))^2,1))') end
    % Kyle Stern, Dec 14 2011
    
  • Mathematica
    For[n=2,n<=10,Print[n," ",Sum[2^((n+1)(k-1)), {k,1,n}]];n++ ]
    Table[FromDigits[Flatten[IdentityMatrix[n]],2],{n,15}] (* Harvey P. Dale, Dec 31 2021 *)
  • PARI
    a(n)=(2^n*2^(n^2)-1)/(2*2^n-1) \\ Charles R Greathouse IV, Jun 09 2015

Formula

a(n) = 2^((n+1)(n-1)) + 2^((n+1)(n-2)) + ... + 1 where n=2,3,...
a(n) = (2^n*2^(n^2)-1)/(2*2^n-1). - Stuart Bruff, Jun 08 2015