A119408 Decimal equivalent of the binary string generated by the n X n identity matrix.
1, 9, 273, 33825, 17043521, 34630287489, 282578800148737, 9241421688590303745, 1210107565283851686118401, 634134936313486520338360567809, 1329552593586084350528447794605199361, 11151733894906779683522195341810241573494785
Offset: 1
Examples
n=2: [1 0; 0 1] == 1001_2 = 9; n=3: [1 0 0; 0 1 0; 0 0 1] == 100010001_2 = 273; n=4: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] == 1000010000100001_2 = 33825.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..57
Crossrefs
Cf. A128889.
Programs
-
MATLAB
for n = 1:10 bi2de((reshape(eye(n),length(eye(n))^2,1))') end % Kyle Stern, Dec 14 2011
-
Mathematica
For[n=2,n<=10,Print[n," ",Sum[2^((n+1)(k-1)), {k,1,n}]];n++ ] Table[FromDigits[Flatten[IdentityMatrix[n]],2],{n,15}] (* Harvey P. Dale, Dec 31 2021 *)
-
PARI
a(n)=(2^n*2^(n^2)-1)/(2*2^n-1) \\ Charles R Greathouse IV, Jun 09 2015
Formula
a(n) = 2^((n+1)(n-1)) + 2^((n+1)(n-2)) + ... + 1 where n=2,3,...
a(n) = (2^n*2^(n^2)-1)/(2*2^n-1). - Stuart Bruff, Jun 08 2015
Comments