cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Kyle Stern

Kyle Stern's wiki page.

Kyle Stern has authored 9 sequences.

A215414 Unix epoch timestamp for start of year, beginning with 1970.

Original entry on oeis.org

0, 31536000, 63072000, 94694400, 126230400, 157766400, 189302400, 220924800, 252460800, 283996800, 315532800, 347155200, 378691200, 410227200, 441763200, 473385600, 504921600, 536457600, 567993600, 599616000, 631152000, 662688000, 694224000, 725846400, 757382400
Offset: 1

Author

Kyle Stern, Aug 09 2012

Keywords

Comments

This is based on a naive multiplication of A033172 with a fixed number of seconds per year, 24*3600 = 86400. It ignores that leap years are not regularly occurring after 4 years (but after 400 years, note the formula that relates a(n+4) to a(n) and also the simple Mma implementation), ignores leap seconds, and any other influences that align the slowing down of the Earth rotation in an astronomical fixed coordinate system measured relative to atomic clocks. In summary, the use of "year" in the definition is not commensurate with years in standard astronomical or earth observational terms. - R. J. Mathar, Aug 21 2012

Crossrefs

Programs

  • Mathematica
    lst = {}; t = 86400; Do[e = t*(365*(n - 1) + Ceiling[n/4]); If[! Mod[n, 4] == 0, e = e - t]; AppendTo[lst, e], {n, 25}]; lst (* Arkadiusz Wesolowski, Aug 20 2012 *)
    CoefficientList[Series[86400*(365*x + 365*x^2 + 366*x^3 + 365*x^4)/((x - 1)^2*(1 +x +x^2 +x^3)), {x,0,50}], x] (* G. C. Greubel, Feb 26 2017 *)
  • PARI
    x='x+O('x^50); Vec(86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3))) \\ G. C. Greubel, Feb 26 2017

Formula

From Alexander R. Povolotsky, Aug 20 2012: (Start)
a(n) = 10800*(2922*n + (-1)^n + (1+i)*(-i)^n + (1-i)*i^n - 2923).
a(n+4) = a(n) + 126230400.
G.f.: 86400*(365*x +365*x^2 +366*x^3 +365*x^4)/((1-x)^2*(1+x+x^2+x^3)). (End)

Extensions

a(11)-a(25) from Arkadiusz Wesolowski, Aug 20 2012

A190760 Product of digits is divisible by number of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 116, 119
Offset: 1

Author

Kyle Stern, May 18 2011

Keywords

Comments

Almost all numbers are in this sequence: there are at least n - 1.125 n^0.95... elements up to n, where the exponent is log(9)/log(10). - Charles R Greathouse IV, May 20 2011

Examples

			3*8*2 = 48 and 48 is divisible by the number of digits, 3, so 382 is included.
		

Crossrefs

Programs

  • Maple
    A190760 := proc(n) option remember: local k: if(n=1)then return 0: fi: for k from procname(n-1)+1 do if(mul(d,d=convert(k,base,10)) mod length(k) = 0)then return k: fi: od: end: seq(A190760(n),n=1..100); # Nathaniel Johnston, May 19 2011

A178968 Numbers that are represented in Roman numerals by exactly four letters.

Original entry on oeis.org

8, 13, 17, 22, 24, 26, 29, 31, 35, 42, 44, 46, 49, 53, 57, 62, 64, 66, 69, 71, 75, 80, 92, 94, 96, 99, 103, 107, 112, 114, 116, 119, 121, 125, 130, 141, 145, 152, 154, 156, 159, 161, 165, 170, 191, 195, 202, 204, 206, 209, 211, 215, 220, 240, 251, 255, 260
Offset: 1

Author

Kyle Stern, Jan 01 2011

Keywords

Crossrefs

Cf. A142958.

Programs

  • Maple
    for n from 1 to 3999 do if(length(convert(n, roman)) = 4)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
  • Mathematica
    Select[Range[300],StringLength[RomanNumeral[#]]==4&] (* Harvey P. Dale, Aug 20 2021 *)

Extensions

Extended by Nathaniel Johnston, May 18 2011

A180961 Numbers such that the American English name of the number has four syllables.

Original entry on oeis.org

27, 37, 47, 57, 67, 71, 72, 73, 74, 75, 76, 78, 79, 87, 97, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 201, 202, 203, 204, 205, 206, 208, 209, 210, 212, 301, 302, 303, 304, 305, 306, 308, 309, 310, 312, 401, 402, 403, 404, 405, 406, 408, 409, 410, 412
Offset: 1

Author

Kyle Stern, Sep 28 2010

Keywords

Comments

There are a finite number of terms, considering all terms up to 10^66 using English names of large numbers and various conventional extensions thereof (see Wikipedia link). - Michael S. Branicky, May 27 2024

Examples

			27 = "twen-ty sev-en", 101 = "one hun-dred one"
		

Crossrefs

Cf. A075774.

Programs

Formula

A075774(a(n)) = 4. - Michael S. Branicky, May 27 2024

Extensions

Corrected by Kyle Stern, Sep 30 2010

A160666 Numbers whose distance to the closest prime number is a prime number.

Original entry on oeis.org

0, 9, 15, 21, 25, 26, 27, 33, 34, 35, 39, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65, 69, 75, 76, 77, 81, 85, 86, 87, 91, 92, 94, 95, 99, 105, 111, 115, 116, 118, 120, 122, 124, 125, 129, 133, 134, 135, 141, 142, 144, 146, 147, 153, 154, 155, 159, 160, 161, 165, 169, 170
Offset: 1

Author

Kyle Stern, May 22 2009

Keywords

Comments

Terms n=2..31 are identical to terms n=1..30 of A079364.

Crossrefs

Programs

  • Maple
    isA160666 := proc(n) local ppl,pmi ; if isprime(n) then RETURN(false): elif n =0 then RETURN(true): elif n =1 then RETURN(false): fi; ppl := nextprime(n)-n ; pmi := n-prevprime(n) ; RETURN (isprime(min(ppl,pmi)) ) ; end: for n from 0 to 200 do if isA160666(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, May 25 2009
  • Mathematica
    fQ[n_] := PrimeQ[ Min[ NextPrime[n] - n, n - NextPrime[n, -1]]]; Select[ Range[0, 174], !PrimeQ@ # && fQ@# &] (* Robert G. Wilson v, May 25 2009 *)

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 25 2009

A161750 Numbers n such that the decimal digits of 123456789*n are all distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 25, 26, 31, 32, 34, 35, 40, 41, 43, 44, 50, 52, 53, 61, 62, 70, 71, 80
Offset: 1

Author

Kyle Stern, Jun 17 2009

Crossrefs

Cf. A053654. [From Zak Seidov, Nov 04 2009]

Programs

  • Maple
    a := proc (n) local nn, nnn: nn := convert(123456789*n, base, 10): nnn := convert(nn, set): if nops(nn) = nops(nnn) then n else end if end proc: seq(a(n), n = 1 .. 80); # Emeric Deutsch, Jun 21 2009
  • Mathematica
    m=123456789;se=Select[Range[0,99],Sort[id=IntegerDigits[m*# ]]==Union[id]&] (* Zak Seidov, Nov 04 2009 *)
    Select[Range[0,100],Max[DigitCount[123456789#]]==1&] (* Harvey P. Dale, Jun 02 2017 *)

Extensions

a(1)=0 added by Zak Seidov, Nov 04 2009
Edited by Charles R Greathouse IV, Aug 02 2010

A165723 The (d+1)th digit after the decimal point in the decimal representation of 1/n, where d is the number of digits of n.

Original entry on oeis.org

0, 0, 3, 5, 0, 6, 4, 2, 1, 0, 0, 3, 6, 1, 6, 2, 8, 5, 2, 0, 7, 5, 3, 1, 0, 8, 7, 5, 4, 3, 2, 1, 0, 9, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Author

Kyle Stern, Sep 24 2009

Keywords

Examples

			1/1 = 1.000 so a(1) = 0;
1/4 = 0.250 so a(4) = 5;
1/14 = 0.0714... so a(14) = 1;
1/114 = 0.00877... so a(114) = 7.
		

Programs

Extensions

More terms from R. J. Mathar, Sep 26 2009

A160180 Largest proper divisor of the n-th composite number.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 7, 5, 8, 9, 10, 7, 11, 12, 5, 13, 9, 14, 15, 16, 11, 17, 7, 18, 19, 13, 20, 21, 22, 15, 23, 24, 7, 25, 17, 26, 27, 11, 28, 19, 29, 30, 31, 21, 32, 13, 33, 34, 23, 35, 36, 37, 25, 38, 11, 39, 40, 27, 41, 42, 17, 43, 29, 44, 45, 13, 46, 31, 47, 19, 48, 49, 33, 50, 51, 52
Offset: 1

Author

Kyle Stern, May 03 2009, May 04 2009

Keywords

Comments

Old name: The n-th positive composite number divided by its lowest nontrivial factor.

Examples

			a(1) = 4/2 = 2, a(2) = 6/2 = 3, a(3) = 8/2 = 4, a(4) = 9/3 = 3, a(5) = 10/2 = 5.
		

Crossrefs

Programs

  • Haskell
    a160180 = a032742 . a002808  -- Reinhard Zumkeller, Mar 29 2014
  • MATLAB
    function [a] = A160180(k) j = 0; n = 1; while j < k if isprime(n) == 1 skip elseif isprime(n) == 0 j = j + 1; factors = factor(n); lowfactor = factors(1,1); a(j,1) = n/lowfactor; end n = n + 1; end - Kyle Stern, May 04 2009
    
  • Mathematica
    f[n_] := Block[{k = n + PrimePi@ n + 1}, While[k != n + PrimePi@ k + 1, k++ ]; k/FactorInteger[k][[1, 1]]]; Array[f, 75] (* Robert G. Wilson v, May 11 2012 *)
    Divisors[#][[-2]]&/@Select[Range[200],CompositeQ] (* Harvey P. Dale, Dec 06 2021 *)
    (# / FactorInteger[#][[1, 1]])& /@ Select[Range[300], CompositeQ] (* Amiram Eldar, Jun 18 2022 *)

Formula

a(n) = A032742(A002808(n)) = A002808(n) / A056608(n) = A163870(n,A144925(n)). - Reinhard Zumkeller, Mar 29 2014

Extensions

Indices of b-file corrected, more terms added using b-file. - N. J. A. Sloane, Aug 31 2009
New name from Reinhard Zumkeller, Mar 29 2014
Incorrect formula removed by Ridouane Oudra, Oct 15 2021

A160522 The n-th odd composite number minus the n-th even composite number.

Original entry on oeis.org

5, 9, 13, 15, 15, 19, 19, 21, 25, 27, 27, 29, 29, 33, 33, 35, 39, 39, 41, 43, 43, 45, 45, 45, 47, 51, 55, 57, 57, 57, 57, 57, 57, 59, 61, 61, 65, 65, 65, 65, 69, 69, 71, 71, 73, 75, 75, 77, 77, 81, 81, 81, 81, 85, 89, 89, 89, 89, 89, 91, 91, 91, 91, 91, 93, 97, 99, 99, 103, 103
Offset: 1

Author

Kyle Stern, May 16 2009

Keywords

Crossrefs

Programs

  • MATLAB
    composite function [a] = A160522(k) j = 1; n = 1; even = 4; while j < k n = n + 1; if isprime(n) == 1 else if mod(n,2) == 0 else a(j,1) = n - even; even = even + 2; j = j + 1; end end end
    
  • Mathematica
    Last[t = GatherBy[Select[Range[4, 245], ! PrimeQ[#] &], OddQ]] - Take[First[t], Length[Last[t]]] (* Jayanta Basu, Aug 11 2013 *)
  • PARI
    m=70; v=vector(m); k=4; n=0; while(n0&&!isprime(k), n++; v[n]=k-2*(n+1)); k++); v \\ Klaus Brockhaus, May 22 2009
    
  • Python
    from sympy import primepi
    def A160522(n):
        if n == 1: return 5
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return m-(n+1<<1) # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A071904(n) - A005843(n+1).

Extensions

Extended and formula edited by Klaus Brockhaus, May 22 2009