cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088256 Primorial numbers k such that both k-1 and k+1 are prime.

Original entry on oeis.org

6, 30, 2310
Offset: 1

Views

Author

Amarnath Murthy, Sep 27 2003

Keywords

Comments

Conjecture: sequence is finite.
No more terms in the first 300 primorials. - David Wasserman, Jul 25 2005
Search extended to first 700 primorials by Michael De Vlieger, Aug 31 2016
Intersection of A014574 and A002110. - Michel Marcus, Dec 03 2016
Search extended to first 3000 primorials. - Josey Stevens, Aug 10 2021
The first more than 230000 primorial numbers k have been checked for whether k-1 or k+1 or both are primes. See links. If another term k exists, it is over about 10^1400000. - Jeppe Stig Nielsen, Oct 19 2021

Examples

			210 = primorial(4) is not a member as 209 is composite.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local P;
      P:= mul(seq(ithprime(i),i=1..n));
      if isprime(P+1) and isprime(P-1) then P else NULL fi
    end proc:
    map(f, [$1..300]); # Robert Israel, Aug 31 2016
  • Mathematica
    Select[Times @@ # & /@ Prime@ Range@ Range@ 700, Times @@ Boole@ PrimeQ@ {# - 1, # + 1} == 1 &] (* Michael De Vlieger, Aug 31 2016 *)
    Select[FoldList[Times,Prime[Range[20]]],AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Mar 31 2023 *)
  • PARI
    lista(nn) = for (n=1, nn, pr = prod(i=1, n, prime(i)); if (isprime(pr-1) && isprime(pr+1), print1(pr, ", "))); \\ Michel Marcus, Aug 31 2016

Extensions

Corrected by Ray Chandler, Sep 28 2003

A123376 Sum of the first s(n) primes, where s(n) is the sum of the first p(n) primes, where p(n) is the n-th prime. Note that s(n) is A022094.

Original entry on oeis.org

28, 129, 1371, 7141, 68341, 163541, 624211, 1086557, 2756043, 8546951, 11791577, 28122767, 46308119, 58262037, 88870153, 158512433, 263952799, 308206649, 480993245, 635060975, 724715753, 1053143991, 1331063769, 1845563079, 2750645663, 3325653577, 3650662901, 4369224195, 4767074983, 5637335441
Offset: 1

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Oct 13 2006

Keywords

Examples

			a(1)=28=2+3+5+7+11, since s(1)=5=2+3, since p(1)=2.
		

Crossrefs

Programs

  • Maple
    for j from 1 to 23 do s[j]:=sum(ithprime(i), i=1..ithprime(j)); od; for j from 1 to 23 do sum(ithprime(i), i=1..s[j]); od;
  • Mathematica
    With[{prs=Prime[Range[50000]]},Table[Total[Take[prs,Total[Take[prs, prs[[n]]]]]],{n,30}]] (* Harvey P. Dale, May 16 2012 *)

Extensions

More terms from Robert Israel, Jul 30 2020
Showing 1-2 of 2 results.