cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119428 G.f.: A(x) = 1 + Sum_{n>=0} (-1)^n* Sum_{k=1..4} x^(5n+k)/(1-x^(5n+k)).

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 2, 0, 2, 1, 2, 2, 4, 2, 2, 2, 1, 0, 0, 0, 3, 2, 4, 2, 4, 1, 2, 0, 2, 0, 2, 2, 2, 4, 2, 0, 1, 0, 0, 2, 2, 2, 4, 2, 6, 1, 2, 0, 2, -1, 2, 2, 4, 2, 0, 2, 0, 0, 0, 0, 4, 2, 4, 2, 3, 2, 4, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 4, 2, 6, 0, 2, 0, 4, 0, 0, 2, 4, 4, 2, 0, 2, 0, 0, 2, 3, 2, 4, 2, 4, 2, 2, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, -2, 4, 3, 4, 4, 6, 1, 2
Offset: 0

Views

Author

Paul D. Hanna, May 19 2006

Keywords

Comments

Records are A003586 (numbers of the form 2^i*3^j) = [1,2,3,4,6,8,9,12...], occurring at positions: [0,2,4,12,44,132,484,924,4092,...].

Examples

			A(x) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + x^5 + 2*x^6 + 2*x^8 + x^9 +...
= 1 + x/(1-x) + x^2/(1-x^2) + x^3/(1-x^3) + x^4/(1-x^4) +
- x^6/(1-x^6) - x^7/(1-x^7) - x^8/(1-x^8) - x^9/(1-x^9) +
+ x^11/(1-x^11) + x^12/(1-x^12) + x^13/(1-x^13) + x^14/(1-x^14) +...
		

Crossrefs

Cf. A113973.

Programs

  • Mathematica
    A119428[n_] := SeriesCoefficient[(QPochhammer[q^5,q^5])^2/(QPochhammer[q, q^10]*QPochhammer[q^2, q^10]*QPochhammer[q^8, q^10]*QPochhammer[q^9, q^10]), {q, 0, n}]; Table[A119428[n], {n, 0, 50}] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(k=0,n\5+1,(-1)^k*sum(j=1,4,x^(5*k+j)/(1-x^(5*k+j)+x*O(x^n))) ),n)}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k+ x*O(x^n))^[2,-1,-1,0,0,2,0,0,-1,-1][k%10 + 1]), n))} /* Michael Somos, Mar 08 2008 */

Formula

a(5n) = a(n); a(10n+2) = 2*a(5n+1).
Convolution identity: Sum_{k=0..n} a(5(n-k))*a(5k+3) = Sum_{k=0..n} a(5(n-k)+1)*a(5k+2).
Euler transform of period 10 sequence: [1,1,0,0,-2,0,0,1,1,-2]; also,
Moebius transform of period 10 sequence: [1,1,1,1,0,-1,-1,-1,-1,0].
Expansion of (f(-q^5) * f(-q^10))^2 / (f(-q, -q^9) * f(-q^2, -q^8)) in powers of q where f() is Ramanujan's two-variable theta function. - Michael Somos, Mar 08 2008
G.f.: Product_{k>0} (1 - x^(5*k))^2 / ( (1-x^(10*k-1)) * (1-x^(10*k-2)) * (1-x^(10*k-8)) * (1-x^(10*k-9)) ). - Michael Somos, Mar 08 2008
G.f.: 1 + Sum_{k>0} (x^k + x^(2*k) + x^(3*k) + x^(4*k)) / (1 + x^(5*k)). - Michael Somos, Mar 08 2008
If A = A0 + A1 + A2 + A3 + A4 is the 5-section, then A0 * A3 = A1 * A2, A0 * A2 + A3 * A4 = 2 * A1^2. - Michael Somos, Mar 08 2008