cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119456 Numbers m such that the Bernoulli number B_{10*m} has denominator 66.

Original entry on oeis.org

1, 5, 17, 37, 47, 59, 61, 67, 71, 73, 79, 85, 101, 107, 127, 137, 139, 149, 163, 167, 185, 197, 199, 223, 227, 229, 257, 263, 269, 277, 283, 289, 295, 305, 307, 311, 313, 317, 331, 335, 347, 353, 355, 365, 373, 379, 383, 389, 395, 397, 401, 433, 449, 457, 461
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
  • PARI
    isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022

Formula

a(n) = A051230(n)/10 = A051229(n)/5.

Extensions

More terms from Alexander Adamchuk, Jul 28 2006