A119462 Triangle read by rows: T(n,k) is the number of circular binary words of length n having k occurrences of 01 (0 <= k <= floor(n/2)).
1, 2, 2, 2, 2, 6, 2, 12, 2, 2, 20, 10, 2, 30, 30, 2, 2, 42, 70, 14, 2, 56, 140, 56, 2, 2, 72, 252, 168, 18, 2, 90, 420, 420, 90, 2, 2, 110, 660, 924, 330, 22, 2, 132, 990, 1848, 990, 132, 2, 2, 156, 1430, 3432, 2574, 572, 26, 2, 182, 2002, 6006, 6006, 2002, 182, 2, 2, 210, 2730, 10010, 12870, 6006, 910, 30
Offset: 0
Examples
T(3,1) = 6 because we have 001, 010, 011, 100, 101 and 110. Triangle starts: 1; 2; 2, 2; 2, 6; 2, 12, 2; 2, 20, 10; 2, 30, 30, 2; ...
Links
- Muniru A Asiru, Rows n=0..150, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
Programs
-
GAP
Concatenation([1],Flat(List([1..15],n->List([0..Int(n/2)],k->2*Binomial(n,2*k))))); # Muniru A Asiru, Dec 20 2018
-
Maple
T:=proc(n,k) if n=0 and k=0 then 1 else 2*binomial(n,2*k) fi end: for n from 0 to 15 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
Mathematica
T[0,0]:=1; T[n_,k_]:= 2*Binomial[n,2k]; Table[T[n,k],{n,0,15},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Apr 19 2025 *)
Formula
T(n,k) = 2*binomial(n,2k) for n >= 1; T(0,0) = 1.
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) for n >= 3.
G.f.: (1 - z^2 + t*z^2)/(1 - 2*z + z^2 - t*z^2).
T(n,0) = 2 for n >= 1.
T(n,1) = 2*binomial(n,2) = A002378(n-1).
T(n,2) = 2*binomial(n,4) = A034827(n).
T(n,k) = 2*A034839(n-1,k) for n >= 1. [Corrected by Georg Fischer, May 28 2023]
Sum_{k=0..floor(n/2)} k*T(n,k) = A057711(n).
Comments