cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119462 Triangle read by rows: T(n,k) is the number of circular binary words of length n having k occurrences of 01 (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 12, 2, 2, 20, 10, 2, 30, 30, 2, 2, 42, 70, 14, 2, 56, 140, 56, 2, 2, 72, 252, 168, 18, 2, 90, 420, 420, 90, 2, 2, 110, 660, 924, 330, 22, 2, 132, 990, 1848, 990, 132, 2, 2, 156, 1430, 3432, 2574, 572, 26, 2, 182, 2002, 6006, 6006, 2002, 182, 2, 2, 210, 2730, 10010, 12870, 6006, 910, 30
Offset: 0

Views

Author

Emeric Deutsch, May 21 2006

Keywords

Comments

Row n contains 1 + floor(n/2) terms.
Sum of entries in row n is 2^n (A000079).
2*binomial(n-1,2k) is also the number of permutations avoiding both 123 and 132 with k valleys, i.e., positions with w[i]>w[i+1]Lara Pudwell, Dec 19 2018

Examples

			T(3,1) = 6 because we have 001, 010, 011, 100, 101 and 110.
Triangle starts:
  1;
  2;
  2,  2;
  2,  6;
  2, 12,  2;
  2, 20, 10;
  2, 30, 30, 2;
  ...
		

Crossrefs

Programs

  • GAP
    Concatenation([1],Flat(List([1..15],n->List([0..Int(n/2)],k->2*Binomial(n,2*k))))); # Muniru A Asiru, Dec 20 2018
  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 else 2*binomial(n,2*k) fi end: for n from 0 to 15 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    T[0,0]:=1; T[n_,k_]:= 2*Binomial[n,2k]; Table[T[n,k],{n,0,15},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Apr 19 2025 *)

Formula

T(n,k) = 2*binomial(n,2k) for n >= 1; T(0,0) = 1.
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) for n >= 3.
G.f.: (1 - z^2 + t*z^2)/(1 - 2*z + z^2 - t*z^2).
T(n,0) = 2 for n >= 1.
T(n,1) = 2*binomial(n,2) = A002378(n-1).
T(n,2) = 2*binomial(n,4) = A034827(n).
T(n,k) = 2*A034839(n-1,k) for n >= 1. [Corrected by Georg Fischer, May 28 2023]
Sum_{k=0..floor(n/2)} k*T(n,k) = A057711(n).