cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119534 Largest prime divisor of numerator of the n-th Artin's product.

Original entry on oeis.org

5, 19, 41, 109, 109, 271, 271, 271, 811, 929, 929, 929, 929, 2161, 2161, 2161, 3659, 4421, 4969, 4969, 4969, 4969, 4969, 9311, 10099, 10099, 10099, 10099, 10099, 16001, 17029, 17029, 19181, 22051, 22051, 22051, 22051, 22051, 22051, 22051, 32579
Offset: 2

Views

Author

Alexander Adamchuk, Jul 27 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]],{n,2,100}]

Formula

a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].