A119610 Number of cases in which the first player is killed in a Russian roulette game where 5 players use a gun with n chambers and the number of bullets can be from 1 to n. Players do not rotate the cylinder after the game starts.
1, 2, 4, 8, 16, 33, 66, 132, 264, 528, 1057, 2114, 4228, 8456, 16912, 33825, 67650, 135300, 270600, 541200, 1082401, 2164802, 4329604, 8659208, 17318416, 34636833, 69273666, 138547332, 277094664, 554189328, 1108378657, 2216757314
Offset: 1
Examples
If the number of chambers is 3, then the number of the bullets can be 1, 2, or 3. The first player is killed when one bullet is in the first chamber, and the remaining bullets are in the second and third chambers. The only cases are {{1, 0, 0}, {1, 1, 0}, {1, 0, 1}, {1, 1, 1}}, where we denote by 1 a chamber that contains a bullet. Therefore a(3) = 4.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Miyadera, General Theory of Russian Roulette, Mathematica source.
- R. Miyadera, Interesting patterns of fractions, Archimedes' Laboratory.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,1,-2).
Programs
-
Magma
I:=[1,2,4,8,16,33]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-5)-2*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
-
Maple
seq(floor(2^(n+4)/31), n = 1..32); # Mircea Merca, Dec 22 2010
-
Mathematica
U[p_,n_,m_,v_]:=Block[{t},t=Floor[(1+p-m+n-v)/p]; Sum[Binomial[n-v-p*z,m-1], {z,0,t-1}]]; A[p_,n_,v_]:=Sum[U[p,n,k,v],{k,1,n}]; (* Here we let p = 5 to produce the above sequence, but this code can produce A000975, A033138, A083593, A195904, A117302 for p = 2, 3, 4, 6, 7. *) Table[B[5,n,1],{n,1,20}] (* end of program *) CoefficientList[ Series[ 1/(2x^6 - x^5 - 2x + 1), {x, 0, 32}], x] (* or *) LinearRecurrence[{2, 0, 0, 0, 1, -2}, {1, 2, 4, 8, 16, 33}, 32] (* Robert G. Wilson v, Mar 12 2015 *)
-
PARI
for(n=1,50, print1(floor(2^(n+4)/31), ", ")) \\ G. C. Greubel, Oct 11 2017
Formula
a(n) = floor(2^(n+4)/31), which is obtained by letting p=5 in a_p(n) = (2^(n + p-1) - 2^((n-1) mod p))/(2^p - 1).
From Joerg Arndt, Jan 08 2011: (Start)
G.f.: x / ( (x-1)*(2*x-1)*(x^4+x^3+x^2+x+1) ).
a(n) = +2*a(n-1) +a(n-5) -2*a(n-6). (End)
Comments