cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119616 Second elementary symmetric function of divisors of n.

Original entry on oeis.org

0, 2, 3, 14, 5, 47, 7, 70, 39, 97, 11, 287, 13, 163, 158, 310, 17, 533, 19, 609, 262, 343, 23, 1375, 155, 457, 390, 1043, 29, 1942, 31, 1302, 542, 733, 502, 3185, 37, 895, 718, 2945, 41, 3358, 43, 2247, 1859, 1267, 47, 5983, 399, 2697, 1142, 3017, 53, 5150, 1006
Offset: 1

Views

Author

N. J. A. Sloane, based on email from Neven Juric (neven.juric(AT)apis-it.hr), Jun 07 2006

Keywords

Comments

a(p)=p if p is prime and records are A002093 (highly abundant numbers). - Robert G. Wilson v, Jun 07 2006

Examples

			|-------+------------------------------------------+---------------------|
|...n...|................divisors(n)...............|..s2(divisors.(n))...|
|-------+------------------------------------------+---------------------|
|...1...|....................1.....................|..........0..........|
|...2...|...................1,2....................|..........2..........|
|...3...|...................1,3....................|..........3..........|
|...4...|..................1,2,4...................|.........14..........|
|...5...|...................1,5....................|..........5..........|
|...6...|.................1,2,3,6..................|.........47..........|
		

Crossrefs

Column k=2 of A224381.

Programs

  • Maple
    a:= n-> (l-> add(add(l[i]*l[j], i=1..j-1), j=2..nops(l)))
            (sort([numtheory[divisors](n)[]])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jun 25 2014
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Sum[ d[[u]]*d[[v]], {v, 2, Length@d}, {u, v - 1}]]; Array[f, 55] (* Robert G. Wilson v *)
  • PARI
    a(n)=my(d=divisors(n));sum(i=1,#d-1,sum(j=i+1,#d,d[i]*d[j])) \\ Charles R Greathouse IV, Mar 05 2013
    
  • PARI
    a(n)=(sigma(n)^2-sigma(n,2))/2 \\ Charles R Greathouse IV, Mar 05 2013

Formula

a(n) = Sum_{u|n, v|n, u
a(n) = (sigma_1(n)^2-sigma_2(n))/2, cf. A000203, A001157. - Vladeta Jovovic, Jun 07 2006
Sum_{k=1..n} a(k) = zeta(3) * n^3 / 4 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023