A119616 Second elementary symmetric function of divisors of n.
0, 2, 3, 14, 5, 47, 7, 70, 39, 97, 11, 287, 13, 163, 158, 310, 17, 533, 19, 609, 262, 343, 23, 1375, 155, 457, 390, 1043, 29, 1942, 31, 1302, 542, 733, 502, 3185, 37, 895, 718, 2945, 41, 3358, 43, 2247, 1859, 1267, 47, 5983, 399, 2697, 1142, 3017, 53, 5150, 1006
Offset: 1
Examples
|-------+------------------------------------------+---------------------| |...n...|................divisors(n)...............|..s2(divisors.(n))...| |-------+------------------------------------------+---------------------| |...1...|....................1.....................|..........0..........| |...2...|...................1,2....................|..........2..........| |...3...|...................1,3....................|..........3..........| |...4...|..................1,2,4...................|.........14..........| |...5...|...................1,5....................|..........5..........| |...6...|.................1,2,3,6..................|.........47..........|
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Maple
a:= n-> (l-> add(add(l[i]*l[j], i=1..j-1), j=2..nops(l))) (sort([numtheory[divisors](n)[]])): seq(a(n), n=1..80); # Alois P. Heinz, Jun 25 2014
-
Mathematica
f[n_] := Block[{d = Divisors@n}, Sum[ d[[u]]*d[[v]], {v, 2, Length@d}, {u, v - 1}]]; Array[f, 55] (* Robert G. Wilson v *)
-
PARI
a(n)=my(d=divisors(n));sum(i=1,#d-1,sum(j=i+1,#d,d[i]*d[j])) \\ Charles R Greathouse IV, Mar 05 2013
-
PARI
a(n)=(sigma(n)^2-sigma(n,2))/2 \\ Charles R Greathouse IV, Mar 05 2013
Formula
a(n) = Sum_{u|n, v|n, u
Sum_{k=1..n} a(k) = zeta(3) * n^3 / 4 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023
Comments